首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
长三角地区火电行业主要大气污染物排放估算   总被引:3,自引:3,他引:3  
丁青青  魏伟  沈群  孙予罕 《环境科学》2015,36(7):2389-2394
以2012年为基准年,利用排放因子法估算了长三角地区火电行业主要大气污染物(SO2、NOx、烟尘、PM10、PM2.5)排放.其中,SO2、NOx、烟尘、PM10、PM2.5的排放量分别为473 238、1 566 195、587 713、348 773、179 820 t.对于SO2和NOx,300 MW以上机组的贡献分别为85%和82%;烟尘、PM10和PM2.5方面,100 MW以下的机组贡献占比分别为81%、53%和40%.地区贡献方面,由大到小依次为江苏、浙江和上海.另通过对上海地区多家电厂不同等级机组污染排放数据进行统计计算,得出上海地区300 MW以上等级机组的污染物排放因子,对比分析可知,上海地区火电厂污染物排放因子水平总体较低.假设长三角地区火电行业同等级机组均与现在上海地区机组排放水平相当,则行业排放SO2可削减55.8%~65.3%,NOx可以削减50.5%~64.1%,烟尘可以削减3.4%~11.3%.若能提高较小等级机组的发电技术和污染控制水平,各污染物排放削减量可进一步提高.然而,根据长三角地区实际污染情况,应综合因素考虑火电行业削减排放,以促进区域空气质量不断改善.  相似文献   

2.
为了解焦化行业对中国大气的影响,以地级市为单位收集产焦量等活动水平数据,采用排放因子法建立了我国2020年焦化行业大气污染物的排放清单,并对2021年焦炭产量在1000万t及以上的省份焦化区和非焦化区6种常规污染物的浓度、超标率、作为首要污染物出现的频率和空气质量指数等情况进行了对比分析.结果显示,焦化行业大气污染物的高排放区主要集中在我国山西、陕西、河北、内蒙古、山东等省份(自治区),陕西省榆林市排放量最高.焦化区PM2.5和PM10的年均浓度(37.7μg·m-3和82.7μg·m-3)、超标率(9.78%和9.26%)和作为首要污染物出现的频率(17.82%和35.97%)均高于非焦化区的年均浓度(32.0μg·m-3和64.6μg·m-3)、超标率(7.46%和6.74%)和作为首要污染物出现的频率(17.00%和22.33%),SO2在两个地区均未超标,O3仅在焦化区的夏季超标,而NO2  相似文献   

3.
采用实测法与排放因子/排污系数法相结合,建立了山西省某市2018年焦化行业分工序大气污染物精细化排放清单. 通过实测法计算焦炉和地面除尘站有组织大气污染物本地化排放因子/排污系数,并考察了其与炉型、产能和炭化室高度的相关性. 结果表明:①2018年山西省某市焦化行业SO2、NOx、PM2.5、PM10排放量分别为2 779.7、9 092.5、3 357.2和5 687.6 t;炭化室高度为4.3 m的捣固机焦炉企业产能与污染排放量均最大. ②实测机焦炉SO2、NOx、颗粒物平均排放因子/排污系数分别为0.069 5、0.624 4、0.024 7 kg/t,地面除尘站颗粒物平均排放因子/排污系数为0.016 8 kg/t,热回收焦炉SO2、NOx、颗粒物平均排放因子/排污系数分别为0.186 6、0.642 4、0.045 6 kg/t. ③实测焦炉SO2、颗粒物排放因子/排污系数均与炭化室高度呈显著负相关. 研究表明,2018年山西省某市焦化行业产能结构相对落后,因原料、炉型和控制技术等差异,相同产能的不同企业间大气污染物排放量差异较大;机焦炉颗粒物、NOx以及热回收焦炉NOx的排放均高于全国平均水平,而其SO2排放偏低.   相似文献   

4.
基于中国2013~2015年27个省(区、市)平板玻璃企业的逐生产线基础信息、活动水平及污染物控制技术等数据,建立了平板玻璃主要大气污染物SO2、NOx排放量计算方法和排放清单,使用蒙特卡洛法进行了不确定性分析.统计了平板玻璃产量、燃料使用量、燃料结构以及污染物控制技术,分析了排放特征与空间差异.结果表明:中国平板玻璃行业以天然气/煤气为主要燃料,平均单位产品能源消耗量为13.2kg标煤/重量箱,山西、内蒙古等省份较高;37%和42%的生产线分别安装了脱硫、脱硝设施,技术以烟气循环流化床、双碱法、SCR为主;SO2排放量先升后降,2014年达到16.84万t,2015年下降至13.67万t,湖北、浙江、河北、广东排放量较大;NOx排放量持续下降,从2013年的37.47万t下降至2015年的28.38万t,河北、湖北、山东、广东排放量较大;SO2排放强度西南部地区高于其他地区,且有上升趋势,其他地区SO2排放强度整体下降;NOx排放强度中西部地区较高.应加强高能耗、高排放以及高强度地区的污染控制力度.  相似文献   

5.
采用物料衡算及排放因子法建立了2012年广东省火电大气污染物排放(下称火电排放)清单,并运用WRF/SMOKE/CAMx模型分析火电排放对大气环境质量的影响. 结果表明:SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放量分别为269 408、539 565、301 257、135 920、65 050、18 790、1 949 t. 300 MW以上的机组对火电排放的贡献较大,但125 MW以下的机组单位煤耗污染物排放较高. 春季、夏季、秋季、冬季火电排放所占比例分别为27.1%、25.4%、24.0%和23.5%,24 h排放呈“三峰三谷”特征;排放量较大的城市为广州、佛山、东莞、江门、汕头、潮州和梅州,不同区域火电排放贡献率顺序为珠三角 (46.2%~52.3%)>广东省东部(26.9%~34.3%)>广东省西部(11.9%~14.4%)>广东省北部(5.5%~10.0%). 8月火电排放对珠三角城市ρ(SO2)、ρ(NO2)月均值的贡献率较高,分别为17.0%、11.1%,其次为10月、4月、1月,其影响集中于火电厂所在城市及下风向区域,对不同城市的贡献差异性较大,具有局地特征;火电排放10月对ρ(PM10)、ρ(PM2.5)月均值贡献率(9.1%、10.6%)较高,其次为8月、4月和1月,影响区域更广,对不同城市的贡献差异较小,呈现区域性特征.   相似文献   

6.
火电行业"十三五"主要大气污染物减排潜力情景分析研究   总被引:3,自引:0,他引:3  
火电行业是总量减排的重点行业,也是主要大气污染物削减量的首要贡献者,其主要大气污染物排放量的削减抵消了其他行业的排放增长,为"十二五"全国减排任务的完成做出了重大贡献.本研究在火电行业主要大气污染物排放控制现状分析的基础上,结合火电行业技术政策措施要求,对火电行业"十三五"新增排放量进行了预测,并设置基于技术可行、排放标准以及超低排放三套减排情景,测算"十三五"减排潜力,评估火电行业"十三五"减排空间,对全国及各省火电行业减排形势提出了相应的意见和建议.  相似文献   

7.
李辉  孙雪丽  庞博  朱法华  王圣  晏培 《环境科学》2021,42(12):5563-5573
从我国"十四五"及2035年远景目标经济发展预测出发,结合碳减排战略目标下的既有与强化政策情景,基于弹性系数法预测电力需求,测算在不同污染物排放标准约束情景下火电大气污染物排放情况及减排潜力,结果表明,在不同的政策和排放标准约束情景下,我国火电行业烟尘、SO2和NOx排放水平变化呈现出不同的趋势,到2035年,在2016年水平上的减排潜力分别在45.97%~85.37%、52.61%~84.90%和33.80%~71.08%之间,来自碳减排目标下政策因素带来的减排潜力,较不同污染物排放标准约束条件带来的减排潜力更为明显,在强化政策情景下,采取保持模式标准约束的污染物减排潜力已与超低模式基本相当,甚至超过或接近既有政策下采取收严模式标准约束的效果,通过强化实施能源和电力优化政策,加快实现火电发电量达峰,合理引导高污染排放水平火电机组优先退出生产,同样可使火电大气污染物排放得到有效控制,还可避免环保改造投资的浪费和损失.  相似文献   

8.
根据收集的四川省水泥行业活动水平数据及排放因子,建立了四川省2008-2014年水泥行业大气污染物排放清单,分析其年际变化趋势,识别时间分布特征,并利用GIS建立了高分辨率的网格化清单.此外,对水泥行业污染物排放的不确定性范围进行了定量估算.结果表明,2008-2014年水泥行业SO2和NOx排放显著增长,而PM10和PM2.5排放呈下降趋势;成都及周边地区以及川东北地区是水泥污染排放的主要贡献地区,大部分城市的污染变化与全省的情况基本一致;新型干法水泥产量比重由2008年的41%增长至2014年的88%,随之各污染物排放占比也显著增长,2014年约达到90%;水泥NOx排放对空气NO2质量浓度有一定影响,变化趋势较为一致,相比而言,PM10质量浓度受水泥排放影响较小;水泥产量月变化特征不明显,年初1、2月份产量较低,下半年产量高于上半年;在空间分布上,污染物排放主要集中在德阳-绵阳、眉山-乐山及内江-自贡等地;水泥行业排放清单的不确定性主要来源于污染物去除效率及排放因子的选取,其中,PM2.5不确定性范围较大,约为-64%~103%,SO2的不确定性范围较小,为-45%~45%.  相似文献   

9.
为了科学评估京津冀区域燃煤发电行业特别排放限值和超低排放相关要求实施后的大气污染物减排效果,以行业调查数据为基础,建立了2013年和2015年京津冀区域燃煤发电行业大气污染物排放清单,分析了装机容量与SO_2、NO_x和烟尘排放量的时空耦合关系,讨论了国家相关政策和标准的实施效果。结果显示:区域内2015年燃煤机组装机容量与2013年相比略有下降,SO_2、NO_x和烟尘排放量分别下降75.95%、83.09%和71.20%,减排效果明显。2015年100 MW以下等级机组3种污染物排放总量位居各机组首位,建议通过多种合理方式压减小型燃煤发电机组数量和排放浓度。  相似文献   

10.
通过介绍二氧化硫、氮氧化物的控制技术,烟气全颗粒物捕捉技术,烟气脱汞技术等,对其特点、效果、适合情况做了全面分析,指出了大气污染集成控制技术的研究结论和研究方向。  相似文献   

11.
典型石化企业排放空气质量影响模拟研究   总被引:2,自引:2,他引:0  
基于惠州市大亚湾区2017年大气污染源排放清单,利用WRF-CMAQ模型系统量化评估了大亚湾区某典型石化企业在关停和增产排放情景下对周边空气质量的影响.清单结果显示该企业2017年SO2、NOx、PM10、PM2.5、CO和VOCs的排放量分别为212 、1744 、455 、359 、1458 和6446 t,在严格落实等量替代及减排措施后,该石化企业虽然产能翻倍,但VOCs排放量同比2017年显著减少了30%,其它污染物排放量增加了6%~19%.模拟结果显示2017年该石化企业排放对大亚湾区NO2、PM10、PM2.5和O3的浓度贡献分别为0.91、0.64、0.54和-0.08 μg·m-3,完全关闭该企业排放后对周边站点NO2改善效果最大(可使邻近管委会子站NO2浓度下降1.24 μg·m-3,下降百分比为5.10%),但由于NO的滴定效应,该企业NOx减排对周边管委会子站和霞涌子站的O3浓度均有轻微负贡献;该石化企业的增产改造对周边O3浓度降低影响明显,周边站点中O3浓度最高可下降2.45 μg·m-3(下降幅度为1.72%),大亚湾区O3浓度整体也可下降1.45 μg·m-3.此外,受秋冬季不利扩散条件以及主导上风向污染传输影响,该企业在1月和10月对管委会子站NO2、PM10和PM2.5的浓度贡献较大,由于冬季低温导致光化学反应自由基活性降低,该企业在1月对管委会子站O3浓度负贡献显著.  相似文献   

12.
基于火电企业在线监测数据、环境统计数据、排污许可及火电排放清单等,分析各统计口径下的海南火电大气污染物排放量差异,并基于在线监测数据分析海南省火电排放时间变化规律.分别设置现状、排污许可及超低排放3种情景,采用CALPUFF模型分析3种情景下火电厂对海南大气环境的影响.结果显示,不同统计口径下火电厂各污染物排放量差异较大,最大差值可达到5.65倍;在时间维度上,海南省火电行业污染物排放量月际分布较平稳,每月污染物排放量约占全年的7%~10%,24h变化呈现明显“两峰两谷”特征.在大气环境影响方面,火电企业大气SO2、NOx、PM2.5、PM10浓度分布总体呈现西部高东部低的趋势.现状情景下火电企业对各城市年均浓度影响范围为SO2 0.001~0.015μg/m3、NOx 0~0.01μg/m3、PM10 0.001~0.006μg/m3、PM2.5 0~0.003μg/m3,最高浓度基本出现在东方市、临高县.火电厂对大气环境的影响程度为许可情景>现状情景>超低情景,执行排污许可时火电厂排放PM10和NOx对各城市均值年均浓度较现状情景分别增加50%和38%;全面实施超低排放后,火电厂对大气环境影响有明显改善,SO2和PM2.5对各城市均值年均浓度较现状情景分别降低57%和69%.  相似文献   

13.

对现行温室气体排放核算方法标准和指南进行了系统梳理,分析了现行核算方法的差异,提出了其纳入环境影响评价制度存在的问题,并以火电行业为例,提出了火电建设项目环境影响评价中碳排放核算边界、计算方法和核算参数的选取原则。结果表明:现行温室气体排放核算方法在核算边界、核算范围、核算因子和计算方法上均有一定差异。现行核算方法不能直接适用于建设项目环境影响评价工作,存在无法准确获取核算参数、核算边界不符合环评要求、各指南间推荐参数不一等问题。对于火电行业,从纳入考虑的碳排放源来看,化石燃料燃烧排放占比为93.5%~99.8%,开展环境影响评价时可重点考虑发电机组燃料燃烧排放,忽略其他过程排放;在计算方法上,基于元素碳含量核算二氧化碳结果较为准确,误差不超过10%,基于低位发热量核算误差达18%~30%,开展环境影响评价时建议基于元素碳含量开展核算,燃煤电厂的燃料消耗量建议选用环境影响评价阶段预估值,元素碳含量建议选用环境影响评价阶段设计煤样实测值,避免使用低位发热量和单位热值含碳量的缺省值,碳氧化率建议直接选取缺省值。

  相似文献   

14.
中国火力发电燃料消耗的生命周期排放清单   总被引:64,自引:0,他引:64       下载免费PDF全文
介绍了火力发电因化石燃料消耗而引起主要气态污染物排放量的估算方法,计算得到中国火力发电燃料消耗所引起的生命周期总排放量及单位售电的生命周期排放清单.与2002年中国火力发电燃料消耗相关的CO2、SO2、NOx、CO、CH4、NMVOC、烟尘、As、Cd、Cr、Hg、Ni、Pb、V和Zn的单位售电生命周期排放量分别为1.07、9.93×10-3、6.46×10-3、1.55×10-3、2.60×10-3、4.87×10-42.02×10-22.00×10-61.27×10-81.69×10-78.78×10-82.50×10-71.76×10-62.88×10-62.40×10-6g/(kW  相似文献   

15.
张炳  王珂  毕军 《中国环境科学》2010,30(3):416-419
以电力行业二氧化硫排污交易为例,探讨了外部市场(煤炭价格、电力价格)的变化对企业在排污交易市场中的决策影响,以及整个排污交易市场的表现.基于一般均衡框架的分析结果表明,煤炭和电力的价格会显著影响排污交易市场的价格和绩效;在我国目前煤电价格体系下,煤炭价格的持续上升,将会大大降低配额的价格和市场活跃程度.  相似文献   

16.
基于中国2011~2015年发电企业逐台燃煤机组基础信息、活动水平及控制技术等,建立了燃煤电厂NOx排放量计算方法和排放数据库.利用该方法,计算了2011~2015年逐个机组NOx排放量,分析了2010~2015年中国燃煤电厂NOx排放特征.结果表明:中国燃煤电厂NOx排放量自2010年的1073万t增加到2011年的1132万t,达到排放峰值,随后逐年下降,到2015年下降到522万t.燃煤电厂NOx排放地区分布不均衡,2015年内蒙、山东、江苏、江西、河南、河北、辽宁是排放量最大的省份,占中国燃煤电厂排放总量的48.8%.上海、江苏、天津、宁夏、山东、浙江和山西是排放强度最大的省份.从机组规模来看,单台容量在300~≤600MW之间的燃煤机组是NOx排放的主要来源,当机组装机容量从100MW提高到1000MW时,NOx平均排放绩效从2.91g/kWh降至0.48g/kWh,下降了近84%,这主要是由于装机容量越大的燃煤发电机组,电力工业技术水平和污染治理水平越高,NOx平均绩效越低,环境行为越好.  相似文献   

17.
自下而上建立2018年中国高分辨率钢铁企业大气污染物排放清单(HSEC,2018),定量模拟中国钢铁企业2018年和未来年情景下排放各种大气污染物对环境的影响情况.结果表明:2018年,中国钢铁行业共排放SO2、NOx、PM10、PM2.5、PCDD/Fs、VOCs、CO、BC、OC、EC、氟化物分别为29.02万t、66.57万t、28.73万t、11.69万t、2.24kg、89.21万t、4057.49万t、0.45万t、0.61万t、0.06万t、0.88万t,焦化、烧结、球团、高炉4个铁前工序是中国钢铁行业大气污染物主要排放环节,中国钢铁行业对各省份SO2、NOx、PM2.5年均浓度贡献比例平均值分别为2.85%、3.37%、1.54%;未来年,中国钢铁企业SO2、NOx、PM10排放量分别为4.94万t、7.58万t、4.11万t,分别下降了82.98%、88.61%、85.69%,中国钢铁行业对各省份SO2、NOx、PM2.5年均浓度贡献比例平均值分别为0.31%、0.22%、0.02%.  相似文献   

18.
为研究标准件行业VOCs排放特征及其环境影响,选取了典型标准件企业进行现场调研与采样,运用GC-MS/FID测定了废气中102种VOCs物种,建立了标准件行业VOCs源成分谱,并估算了行业VOCs的环境污染影响、排放因子及排放量.结果表明,标准件行业各工序VOCs均以烷烃(29.58%~68.94%)为主要排放组分.正...  相似文献   

19.
京津冀地区火电企业的大气污染影响   总被引:5,自引:0,他引:5  
以在线监测、环评、验收等火电企业排放数据为基础,自下而上编制京津冀火电企业排放清单,利用气象模式WRF生成中尺度气象数据,采用CALPUFF空气质量模式模拟了不同情境下京津冀地区火电企业排放SO2、NOx、一次PM10,以及二次生成硫酸盐、硝酸盐等污染情况.结果显示,2011年京津冀地区火电行业排放污染物对京津冀西南部地区影响较大,各污染物年均最大浓度均出现在石家庄市;采取减排措施后,京津冀地区火电排放量SO2、NOx、烟粉尘总量与2011年火电排放现状相比 ,分别下降了33%、71%、68%;减排后火电行业对各城市SO2、NOx、一次PM10,以及二次生成硫酸盐、硝酸盐年均贡献浓度均大幅度减少,年均贡献最大值分别降低46.34%、78.43%、76.34%、39.49%、73.87%.  相似文献   

20.
我国钢铁工业一次颗粒物排放量估算   总被引:2,自引:0,他引:2  
针对我国钢铁工业生产工艺以及颗粒物控制技术的分类,建立了一个细化到排放节点的自下而上的颗粒物排放模型.结合我国钢铁工业各地区活动水平以及颗粒物控制技术分布的历史变化趋势分析,利用此模型计算了2006—2012年我国钢铁工业一次颗粒物的排放系数和排放量.模型计算结果显示,2006年以来,我国钢铁工业颗粒物控制水平不断提高,PM_(2.5)、PM_(2.5)~10和PM10的排放系数分别降低了21.2%、19.3%和19.0%.钢铁工业一次颗粒物排放量在2006—2011年间持续增长,2011年TSP排放量为602×104t,PM10排放量为200×104t,PM_(2.5)排放量为124×104t;2012年排放量出现下降,TSP排放量为561×104t,PM10排放量为187×104t,PM_(2.5)排放量为116×104t.2012年我国钢铁工业一次PM_(2.5)排放量中的有组织排放占39.5%,无组织排放占60.5%;除加严有组织源管控之外,减少颗粒物无组织排放,对于钢铁工业颗粒物排放控制也非常重要.我国钢铁工业颗粒物排放量分布不均衡,河北、山东、江苏、辽宁、山西5个省的排放超过全国总排放的50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号