首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
宋进  徐航  邹威  王洪  张晨 《中国塑料》2022,36(7):8-13
以浓乳液作为悬浮聚合的油相,采用水(W)/油(O)/W浓乳液/悬浮聚合方法制备出了内部具有通孔结构、粒径均一的聚甲基丙烯酸叔丁酯多孔微球。结果表明,通过研究乳化剂含量、搅拌速度等参数对多孔微球的内部微孔形貌与微球粒径的影响,发现当乳化剂含量为4 %时,得到的聚合物微球内的微孔结构分布均匀;而聚合物微球的平均粒径会随着搅拌速度的增大而减小。将不同粒径的多孔微球进行酸化水解后得到了表面羧基官能化的聚合物多孔微球,利用其丰富的通孔结构实现了对铜离子(Cu2+)的有效吸附,当微球平均粒径介于200~300 μm时,铜离子的去除率最高,可达99.3 %。  相似文献   

2.
王少华  张淑芬 《精细化工》2019,36(10):2046-2051
通过硅氧烷单体在碱性条件下的水解-聚合反应,制备出了单分散乳液,研究了乳化剂HLB、反应时间、乳化剂用量、单体用量等因素对乳液的影响。然后以该乳液为模板、有机硅为壳层进行包覆,得到了中空微球。采用纳米粒度及Zeta电位分析仪、SEM、TEM、EDS、FTIR对乳液及中空微球进行表征。结果表明,在室温条件下,反应时间为6h时能够制备出单分散性较好的乳液,通过改变乳化剂用量、单体用量,能够实现对乳液粒径的调控,调控范围346~472 nm。以该乳液为模板进行缓慢包覆,当乳化剂质量分数低于0.003%时,能够得到形貌规整的单分散中空微球,中空微球的主要成分为有机硅。与硬模板法相比,该模板通过乙醇洗涤即可除去,制备过程较为简单。  相似文献   

3.
选择水-煤油体系(体积比为水:煤油:10:1),分别用机械搅拌法和陶瓷微滤膜制备乳液.研究了乳化剂及增稠剂阿拉伯树胶的浓度对乳液稳定性的影响。实验结果表明:对于水一煤油体系,选择质量分数为0.8%的Tween80为乳化剂,加入质量分数为1%的阿拉伯树胶为增稠剂,用0.1μm陶瓷微滤膜为分散介质可以制备粒径分布均匀的乳化液体系,且膜两侧压差及连续相流速对乳液稳定性的影响不大。  相似文献   

4.
采用复凝聚相法以海藻酸钠和壳聚糖为材料制备了高效氯氰菊酯微球,以微球粒径和机械强度为主要性能指标,确定了较适宜制备条件:海藻酸钠质量分数为3%,乳化剂吐温-20为3%,OP-10-P为1%,氯化钙质量分数为2%,壳聚糖质量分数为0.6%,制得的复合微球载药率为22.33%,包埋率为76.17%,粒径为1.5 mm左右,具有良好的强度和稳定性。  相似文献   

5.
采用复凝聚相法以海藻酸钠和壳聚糖为材料制备了高效氯氰菊酯微球,以微球粒径和机械强度为主要性能指标,确定了较适宜制备条件:海藻酸钠质量分数为3%,乳化剂吐温-20为3%,OP-10-P为1%,氯化钙质量分数为2%,壳聚糖质量分数为0.6%,制得的复合微球载药率为22.33%,包埋率为76.17%,粒径为1.5 mm左右,具有良好的强度和稳定性。  相似文献   

6.
以热固性酚醛树脂为基体,Span-80为乳化剂,通过两步反应法--反相细乳液液滴界面聚合和热固化反应制得多孔酚醛树脂微球材料.研究了实验参数对微球粒径及形貌的影响.随着乳化剂用量增加,微球的平均粒径减小,在乳化剂用量大于1%(质量分数)后,粒径变化并不明显.采用滴加固化法可有效避免直接固化法制得的微球粒子间粘连严重、球形度不好的缺点,随着滴加时间的延长,制得的微球粒径分布变宽;使用油溶性引发剂过氧化苯甲酰(BPO)可使致孔模板单体丙烯酸(AA)在连续相和反相细乳液液滴界面间发生聚合;通过调控AA的用量,能得到表面多孔结构的酚醛树脂微球.  相似文献   

7.
采用O/W乳液溶剂挥发法,以不同的物质作为微球制备过程中的表面稳定剂,制备了聚乳酸包覆磷酸钙粉末状复合材料。讨论了搅拌速度、搅拌时间等因素对微球的影响,并对分散过程中的热力学进行了分析。实验结果表明最佳制备条件:搅拌速度800r/min,搅拌时间3h,油水相体积比1:100,聚乳酸质量浓度30g/L,乳化剂为Tween20。  相似文献   

8.
以撞击流-旋转填料床为乳化设备,煤油为有机介质,山梨醇酐油酸酯(Span 80)和烷基酚聚氧乙烯醚(OP-10)为复配乳化剂制备了丙烯酰胺反相乳液,研究了超重力因子、撞击速度、油水体积比、乳化剂质量分数、复配乳化剂HLB值以及丙烯酰胺单体质量分数对乳液稳定性的影响,并与搅拌式乳化装置进行了对比研究。结果表明:在超重力因子为65.32,撞击速度为12.58 m/s,V(油相)∶V(水相)=1∶1,乳化剂质量占乳液总质量的5%,复配乳化剂HLB值为6.0,丙烯酰胺单体质量占单体水溶液总质量的15%的条件下,所制备乳液平均粒径为664 nm,稳定性系数达0.973;对比研究发现,采用撞击流-旋转填料床制备的乳液稳定性好,粒径小,分散均匀,乳化时间短,为连续化制乳过程。  相似文献   

9.
采用相反转法制备水性醇酸树脂乳液,探究搅拌速度、加水速度、乳化温度等工艺条件对乳液制备产生的影响。结果表明:乳化剂加量 5%,200#溶剂油加量为 3%,搅拌速度 4 000~ 6 000 r/min,加水速度 90~120 mL/h,乳化温度 50~60 ℃,KOH加量为 0.5%时所制备的乳液粒径 D90≤ 307 nm,乳液稳定性,涂膜各项性能均达到相关国标要求。  相似文献   

10.
苯丙微乳液的聚合工艺研究   总被引:2,自引:0,他引:2  
采用半连续种子微乳液聚合法,制备了固含量为40%的聚丙烯酸酯微乳液。通过单因素实验确定乳化剂与引发剂分别为MS-1和过硫酸铵(APS)。探讨了乳化剂种类与用量、引发剂种类与用量、反应温度、搅拌速度和单体滴加速度对丙烯酸酯类聚合体系粒径和乳液性能的影响。实验得到:在反应温度78℃左右,质量分数6%-8%的MS-1为乳化剂;质量分数0.7%的APS为引发剂;搅拌速度150—200r/min;反应时间为5h的聚合工艺下,可制得粒径为45.57nm,粒径分布窄(PDI为0.207)和转化率高达95%的微乳液。  相似文献   

11.
采用快速膜乳化技术结合溶剂蒸发法制备以生物可降解聚乳酸-羟基乙酸(PLGA)为载体的胸腺法新载药微球,考察了PLGA分子量、油相中PLGA和乳化剂浓度、外水相pH值和内水相体积等对微球包埋率和粒径的影响. 结果表明,制备粒径均一的PLGA载药微球的优化条件为:PLGA分子量51 kDa,油相中PLGA和乳化剂浓度为100和10 g/L,内水相体积0.5 mL,外水相pH值为3.5. 该条件下所制载药微球粒径均一性好(Span<0.7),药物包埋率高达80%以上,突释率24 h内低于20%,线性持续稳定释药时间长达30 d.  相似文献   

12.
董堃华  刘哲鹏  陈冰玉  贺文军  瞿良 《应用化工》2012,41(6):1048-1050,1055
运用复乳法制备奥曲肽PLGA长效生物可降解微球,并用正交法优化微球制备工艺。利用HPLC、显微镜、激光粒度仪等对微球进行综合质量研究。结果表明,复乳法制备奥曲肽微球的最佳工艺参数为:内水相药物与中油相PLGA的质量比为1∶5,中油相PLGA的浓度为10%,外水相乳化剂为1%的22 000分子量聚乙烯(PVA)水溶液,中油相与外水相的体积比不小于1∶50,复乳化采用机械搅拌法,搅拌速度为1 200 r/min。在该工艺条件下制得的微球,包封率为35.1%,载药量为2.98%,平均粒径为26.3μm,微球外观圆整,形态良好。  相似文献   

13.
以壳聚糖(CS)和海藻酸钠(ALG)为包封材料,以阿维菌素(AVM)为芯材,采用锐孔法制备了阿维菌素-海藻酸钠-壳聚糖微球,考察了海藻酸钠质量分数、壳聚糖质量分数、氯化钙质量分数和芯壁体积比(质量分数1%的阿维菌素乳液与质量分数3%海藻酸钠溶液的体积比)对微球形态及包埋率的影响,利用SEM、FTIR等对微球结构及性质进行了表征,并考察了其在土壤中的缓释性能和释药机制。结果表明,经优化的制备条件为:海藻酸钠、壳聚糖及氯化钙的质量分数分别为3%、0.6%及5%,芯壁体积比为1∶2,制备的载药微球形状规整,成球性良好,粒径约0.7 mm,载药量31.65%,包埋率83.81%;红外光谱分析显示,芯壁材料之间除氢键外,没有发生化学作用。所制备的阿维菌素微球在土壤中具有缓释特性,42 h累积释药率达到82.06%,之后药物释放减缓。药物释放特性符合Riger-Peppas模型,释放机理为Fick扩散。  相似文献   

14.
聚乳酸微球的制备工艺研究   总被引:2,自引:0,他引:2  
以聚乳酸为基础材料,选择聚乙烯醇为乳化剂,采用O/W乳化-溶剂挥发法制备形态较好的聚乳酸微球.在可确定因素固定下来后,在保证成球质量的基础上,分别通过调节乳化剂的浓度和其它因素在一定范围内来控制微球的平均粒径.单因素实验结果表明,PLA浓度、乳化剂浓度、搅拌速度、滴加速度对微球性能影响显著.通过正交实验得出制备粒径大小为100 μm左右聚乳酸微球的最佳工艺方案为:搅拌速度600 r·min-1,PLA浓度9%(g·mL-1),PVA浓度0.5%(g·mL-1),滴加速度1.5 mL·min-1.  相似文献   

15.
水溶性双酚A型环氧树脂乳液的制备   总被引:1,自引:0,他引:1  
张道洪  周继亮  刘娜 《粘接》2008,29(2):30-32
采用E-Ⅱ型乳化剂和相反转技术制备水溶性双酚A型环氧树脂乳液,研究了乳化剂的用量、乳化时间、搅拌速率和乳化温度对乳液稳定性的影响.得出了最佳乳化工艺条件:乳化剂质量分数为7.25%~8.0%、乳化温度为60~70 ℃、搅拌速度为700~900 r/min、乳化时间为40~50 min.采用激光粒度衍射分析仪表征了水溶性环氧乳液的粒径为400~500 nm.  相似文献   

16.
采用相反转乳化工艺制备了亚微米级聚苯乙烯/聚酯共混微球。分析了制备机理、微球中聚酯与聚苯乙烯的相容性及微球形貌,讨论了聚酯用量对微球粒径及分布的影响,测试了共混微球的抗冲击性能、软化温度、附着性以及熔体流动性能。结果表明:微球中聚酯与聚苯乙烯构成不相容体系;共混微球表面粗糙;微球粒径及分布随聚酯用量变化显著,当聚酯质量分数约为14%、乳化剂用量为11%时[乳化剂用量为乳化剂与单体相(苯乙烯和聚酯)质量比],可以得到平均粒径365.3 nm、分散性系数为0.101的亚微米级共混微球;当聚酯质量分数为12%~18%时,随着聚酯含量的增加,共混微球的冲击强度、附着力显著增加,但熔体流动速率降低。  相似文献   

17.
分别采用经过相反转过程的水入蜡乳化法和直接将蜡加入水中进行乳化的蜡入水乳化法2种工艺制备蜡乳液,测试所得蜡乳液粒径及分布等性能,分析乳化剂选择及复配、乳化剂用量、蜡水质量比、搅拌速度、乳化温度和时间等因素对蜡乳液粒径及其分布的影响。试验结果显示:采用相反转工艺,以乳化剂Span-80、Tween-80和助乳化剂十二烷基硫酸钠组成乳化剂体系,在乳化剂的用量为蜡质量的20%、蜡水质量比为1∶5、乳化温度为90℃、搅拌速度大于1 500 r/min,乳化时间为40 min条件下,能够得到平均粒径小于100 nm的蜡乳液。透射电镜照片显示蜡乳液粒子形状为球形。  相似文献   

18.
以60#费托蜡为原料,利用剂在油中法,以Span、Tween系列作为主乳化剂复配,探究了乳化剂种类、乳化温度、搅拌速率、滴加速率和乳化剂含量对所制备的费托蜡乳液性能的影响。结果表明,在乳化温度为80℃、搅拌速率为900 r/min、水相滴加速度为1 mL/min和乳化时间为30 min的条件下,制备出高稳定性和高分散性的亚微级费托蜡乳液,其乳液平均粒径控制在200 nm左右,蜡质量分数为35.71%,黏度在2~5 mPa·s。同时,通过对乳化剂进行适当选择以及助乳化剂的合理掺杂,能在保证乳液其他性能不受较大波动的情况下减少乳化剂的用量。  相似文献   

19.
研究了搅拌速度、聚合温度、复合乳化剂类型和质量分数、p H值、引发剂加入方式对丙烯酸酯微乳液稳定性、粒径及透光率的影响。结果表明:采用预乳化补加助乳化剂、引发剂聚合法,搅拌速度为120~160 r/min,聚合温度为75~76℃,复合乳化剂AES(脂肪醇聚氧乙烯醚硫酸钠)/OP–10(辛基酚聚氧乙烯醚)的质量分数为2%、m(AES):m(OP–10)=3:1时,制备的微乳液具有良好的稳定性,透光率为68.7,凝胶率为0。采用透射电镜和衰减全反射(ATR)红外光谱对微乳液的结构进行表征,显示微乳液的平均粒径为40 nm,该微乳液为丙烯酸酯类聚合物。  相似文献   

20.
低乳化剂含量丙烯酸酯微乳液的合成与性能   总被引:1,自引:1,他引:0  
以脂肪醇聚氧乙烯醚硫酸钠(AES)/辛基酚聚氧乙烯醚(OP-10)为阴/非离子型复合乳化剂,制备了低乳化剂含量的丙烯酸酯微乳液。探讨了搅拌速率、聚合温度、复合乳化剂类型和用量、pH值及聚合中期引发剂补加方式等对丙烯酸酯微乳液的稳定性、透光率、粒径及其分布等影响。结果表明:当搅拌速率为120~160 r/min、聚合温度为75~76℃、复合乳化剂中w(AES+OP-10)=2%且m(AES)∶m(OP-10)=3∶1时,丙烯酸酯微乳液的稳定性最高(凝胶率为0),并且其透光率为68.7%、平均粒径为37.8 nm且粒径分布较均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号