首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
利用单因素实验及响应面法优化确定菊芋块茎中菊糖的提取工艺。通过单因素实验筛选出液固比、提取时间、提取温度3个主要因素,以菊糖得率为响应值利用Design Expert V8.0中心组合试验设计,建立菊糖提取得率的二次回归方程,得到优化组合条件。响应面法分析结果表明,当液固比为18∶1(m L·g~(- 1)),提取时间41min,提取温度86℃时,验证优化工艺得菊芋块茎中菊糖的最大提取得率40.56%,接近于模型预测值40.74%。在该工艺条件下,对菊糖进行粗制,并通过红外光谱仪对所提取的菊糖进行了结构分析。该法用于提取菊芋块茎中的菊糖,工艺简单、成本低,具有一定的应用价值。  相似文献   

2.
白及多糖具有显著的药用价值和良好的护肤作用。本研究首次利用果胶酶酶解的方法,提高白及多糖提取效率。首先,通过响应面优化法,获取最佳酶解条件,在最优条件下大别山白及多糖提取率达64.8%。随后,利用扫描电镜观察和空间构象分析表明酶法提取没有破坏多糖天然结构。体外性质研究表明在一定浓度下白及多糖对羟基自由基、DPPH和超氧阴离子的清除率分别到达87.6%、83.9%和71.5%,显示了较好的抗氧化活性。本研究中的白及多糖提取率为已报道文献的最高量,为白及多糖工业化应用奠定基础,且为其他多糖的高效提取提供参考。  相似文献   

3.
发酵菊芋汁生产果糖糖浆研究   总被引:11,自引:0,他引:11  
分析了来自不同地区的菊芋成分,干物质含量在23%~26%,菊粉多糖含量为17%~18%(鲜重)。制备菊芋汁中的主要固形物成分是菊粉多糖,游离的还原糖和可溶性蛋白质含量很低,菊芋用于果糖或果糖糖浆生产具有较高的经济价值;通过摇瓶发酵试验确定了利用菊芋汁生产果糖糖浆的工艺,用自动模拟发酵罐进行了生产模拟实验。产品总糖含量为61%,其中果糖95%,葡萄糖5%,通过发酵法生产果糖糖浆总糖得率为90%。  相似文献   

4.
为获得高产菊粉酶的黑曲霉菌株,以Aspergillus niger YH-1为出发菌株,经过亚硝基胍(NTG)诱变,以高温高菊芋粉相结合的方式进行梯度驯化,选育出一株产菊粉酶菌株YH-3,并运用响应面实验方法对该菌株的培养基进行优化。确定了最佳培养基组成:菊芋粉25.2 g/L、豆饼粉40 g/L、蔗糖酯4.9 g/L、NaCl 5.5 g/L。发现内切菊粉酶活力(I)由60.9 U/mL提高到165.0 U/mL,比出发菌株提高了1.7倍。研究证明蔗糖酯对于黑曲霉YH-3发酵产菊粉酶是一种有效的促进剂。  相似文献   

5.
微生物菊粉酶的研究进展   总被引:2,自引:0,他引:2  
肖春玲 《微生物学杂志》1999,19(4):38-39,46
菊粉酶(Inulinas.EC3.2.1.7)是B-2.1-D-果聚糖酶,可从果糖的非应原端逐个切下单个果糖(外切酶活性),或在分子内部随机切断某个p-2.1糖着键(内切酶活性)[1]。菊粉酶主要来源于菊科植物和部分微生物,微生物菊粉酶主要来自霉菌、酵母菌和细菌。菊粉酶可水解天然果聚精一菊粉(Inulin),利用菊粉酶一步水解菊粉制备高果糖浆具有工艺简单、原料价格低廉、转化率高、副产物少,不增加环境污染等优点,因而具有很大的开发应用潜力。菊粉是果糖的多聚物,富含于菊芋(He-lianthustuberosus)等多种菊科植物中,菊芋块茎主要成分…  相似文献   

6.
筛选分离可以分解菊芋中菊糖的菌株。采用平板稀释法从土样中筛选出能够分解菊芋中菊糖的菌株,并从中得到1株酶活较高的真菌A-15,经菌落观察及采用18S rRNA基因测序鉴定,研究不同因素对菌株菊粉酶活力的影响。通过对分离得到的菌株形态观察及分子鉴定后,确定菌株A-15为黑曲霉(Aspergillus niger)。通过正交试验优化菌株A-15的发酵条件分析结果显示,菌株A-15产菊粉酶最优条件:最佳氮源为酵母膏,氮源量1.0%,氯化钠0.5%,磷酸氢二钾0.3%,菊芋汁定容,初始pH 6,培养温度30℃,摇瓶发酵6 d。结果表明菌株A-15具有很好地降解菊芋中菊糖的性能。  相似文献   

7.
【目的】低聚果糖是新型的食品和保健品原料,具有广阔的市场需求。以菊粉酶水解菊粉制备低聚果糖的酶法工艺是先进的绿色制造。本研究旨在获得高产的菊粉酶菌株及以菊粉为原料酶法制备低聚果糖的优化工艺。【方法】采用基因工程手段克隆马克斯克鲁维酵母菌(Kluyveromyces marxianus)的菊粉酶基因,实现其在毕赤酵母中的高效表达;测定菊粉酶在不同p H、温度、金属离子和底物浓度等条件下的酶活变化趋势,获得最佳的反应参数;通过高效液相色谱法检测水解产物,获得不同酶量水解产物各组分分布。【结果】菊粉酶工程菌株在10 L发酵罐中的产菊粉酶活达1 570 U/m L、蛋白质含量为2.75 g/L发酵液;菊粉酶最适反应参数为:在体积为1 L的反应体系中,p H 5.0、反应温度50°C、含0.2 mmol/L Mg2+以及菊粉浓度为8%。在该条件下,酶量为10 U时菊粉被完全水解。水解产物中单糖和二糖含量仅为9.25%,而低聚果糖(C3-C8)含量为90.75%,且C3-C5低聚果糖含量高达72.92%。【结论】克隆了K.marxianus菊粉酶基因并实现了高效表达,获得了水解菊粉制备低聚果糖的最佳工艺条件。为菊粉酶的大量生产及低聚果糖的酶法制备奠定了良好的基础。  相似文献   

8.
研究细叶杜香抗氧化物质的最佳提取工艺及提取物的抗氧化性能。在单因素试验基础上,选择提取时间、提取温度及料液比为影响因子,应用Box-Benhnken中心组合法进行3因素3水平试验设计,以1,1-二苯基-2-三硝基苯肼(DPPH)清除率为响应值,进行响应面分析,并研究提取物的体外抗氧化活性。结合实际操作,得到最佳提取条件为提取时间3.3 h、提取温度69℃、料液比为1∶23,在该条件下提取液的DPPH自由基清除率为84.37±0.17%,接近预测值。抗氧化物质得率为4.68±0.24 g/100 g,总黄酮含量为236.17±2.16 mg/g,多酚含量为73.97±3.18mg/g。抗氧化活性实验结果表明,细叶杜香提取物具有较好的抗氧化活性。  相似文献   

9.
为优化银杏叶多酚提取工艺,通过单因素试验考察填充率、球磨转速、球磨时间、乙醇浓度、料液比、提取温度、提取时间七个因素对机械力辅助提取银杏叶多酚得率的影响,以银杏叶多酚得率为响应值,采用Box-Benhnken三因素三水平响应面设计优化工艺,同时比较了4种提取方法对银杏叶多酚提取得率和抗氧化活性的差异。结果表明,机械力辅助提取银杏叶多酚的最佳工艺条件为:填充率26%、球磨转速为400rpm、球磨时间为15min。在此条件下,银杏叶多酚的得率为7.33%。机械力辅助乙醇提取银杏叶多酚得率低于碱水提取法,但是抗氧化活性高于碱水法提取的银杏叶多酚;抗氧化活性与乙醇回流法提取的银杏叶多酚相当,但是提取得率高于乙醇回流法。此提取工艺高效可行,具有一定的参考价值。  相似文献   

10.
以脱脂后的漆树籽粕为原料,采用木瓜蛋白酶和纤维素酶进行辅助提取漆树籽粕多糖,通过单因素实验筛选了该方法的工艺条件,并进一步研究漆树籽粕多糖对羟自由基和DPPH自由基的清除能力。结果表明:纤维素酶的最佳酶解条件是:酶用量是漆树籽粕粉重量的0.5%,酶解温度45℃,pH值4.5~5.0,酶解反应1 h。木瓜蛋白酶的最佳酶解条件是:酶用量是漆树籽粕粉重量的1%,酶解温度50℃,pH值6~7,酶解反应1 h,在此条件下漆树籽粕多糖得率为2.371%。漆树籽粕多糖对羟自由基和DPPH的IC50分别为8.16 mg/mL和6.83 mg/mL。当浓度为10 mg/mL时,对羟自由基和DPPH的清除率分别为62.63%和56.86%。结果表明酶解法辅助提取的漆树籽粕多糖具有一定的体外抗氧化活性。  相似文献   

11.
Aims: To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. Methods and Results: The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38°C for growth and inulinase production, and 35°C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l?1, and the highest ethanol yield of 0·467, or 91·5% of the theoretical value of 0·511, was achieved for the slurry with a solid concentration of 200 g l?1. Conclusions: Halophilic Jerusalem artichoke can be used for fuel ethanol production. Significance and Impact of the Study: Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.  相似文献   

12.
A high molecular weight inulin has been prepared from artichoke (Cynara scolymus L.) agroindustrial wastes using environmentally benign aqueous extraction procedures. Physico-chemical analysis of the properties of artichoke inulin was carried out. Its average degree of polymerization was 46, which is higher than for Jerusalem artichoke, chicory, and dahlia inulins. GC-MS confirmed that the main constituent monosaccharide in artichoke inulin was fructose and its degradation by inulinase indicated that it contained the expected beta-2,1-fructan bonds. The FT-IR spectrum was identical to that of chicory inulin. These data indicate that artichoke inulin will be suitable for use in a wide range of food applications. The health-promoting prebiotic effects of artichoke inulin were demonstrated in an extensive microbiological study showing a long lasting bifidogenic effect on Bifidobacterium bifidum ATCC 29521 cultures and also in mixed cultures of colonic bacteria.  相似文献   

13.
菊糖的提取及纯化   总被引:23,自引:0,他引:23  
菊糖是一种水溶性的功能性天然多糖,可用热水从菊芋中提取.本实验对菊糖的提取工艺进行了研究,比较了提取温度、固液比、提取次数、提取时间四个因素对提取率的影响,并采用正交设计法优化提取条件,确定了最佳的提取工艺,且对菊糖的纯化作了较为深入的研究.  相似文献   

14.
Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.  相似文献   

15.
The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans (GenBank access code AF222787) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein Aga1p. The surface display of CFTase was confirmed by immunofluorescence microscopy and enzymatic assay. The optimized reaction conditions of surface-displayed CFTase were as follows; pH, 8.0; temperature, 50 degrees C; enzyme amount, 30 milliunit; substrate concentration, 5%; inulin source, Jerusalem artichoke. As a result of the reaction with inulin, cycloinulohexaose was produced as a major product along with cycloinuloheptaose and cycloinulooctaose as minor products.  相似文献   

16.
Inulin, a polyfruction, is found as the reserve carbohydrate in the roots and tubers of various plants (i.e. Jerusalem artichoke, chicory, and dahlia tubers). The beta-fructofuranosidase (inulase) from the yeast Kluyveromyces fragilis is of interest because of its industrial potential in fructose syrup and alcohol production from inulin containing plants. We have found that the inulase of K. fragilis can be immobilized in the yeast cells by glutaraldehyde treatment. These cells are resistant to physical and enzymatic destruction. Although the exact nature of the immobilization is not fully understood, the kinetic parameters of the immobilized enzyme are similar to those of the soluble enzyme. No reduction of enzyme activity was observed after glutaraldehyde treatment and glutaraldehyde concentration did not affect enzyme activity. A 96% hydrolysis of dahlia inulin was achieved in 10.5 h with a 9.5% (w/v) fixed enzyme suspension. A Jerusalem artichoke extract containing 16.8%polyfructan was completely hydrolyzed in 3.5 h with a 0.24% (w/v)fixed enzyme suspension. This is a time frame feasible for industrial consideration.  相似文献   

17.
Prebiotic substances are extracted from various plant materials or enzymatic hydrolysis of different substrates. The production of fructo-oligosaccharide (FOS) and inulo-oligosaccharide (IOS) was performed by applying two substrates, sucrose and inulin; oligosaccharide yields were maximized using central composite design to evaluate the parameters influencing oligosaccharide production. Inulin from Jerusalem artichoke (5–15% w/v), sucrose (50–70% w/v), and inulinase from Aspergillus niger (2–7 U/g) were used as variable parameters for optimization. Based on our results, the application of sucrose and inulin as co-substrates for oligosaccharide production through inulinase hydrolysis and synthesis is viable in comparative to a method using a single substrate. Maximum yields (674.82?mg/g substrate) were obtained with 5.95% of inulin, 59.87% of sucrose, and 5.68 U/g of inulinase, with an incubation period of 9?hr. The use of sucrose and inulin as co-substrates in the reaction simultaneously produced FOS and IOS from sucrose and inulin. Total conversion yield was approximately 67%. Our results support the high value-added production of oligosaccharides using Jerusalem artichoke, which is generally used as a substrate in prebiotics and/or bioethanol production.  相似文献   

18.
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40?°C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200?g?L(-1)) at 40?°C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2?g?L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7?%, respectively. In the range of 30 to 40?°C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.  相似文献   

19.
Yang F  Liu Q  Bai X  Du Y 《Bioresource technology》2011,102(3):3424-3429
5-Hydroxymethylfurfural (HMF) was produced from monosaccharide (fructose and glucose), polysaccharide (inulin) and the Jerusalem artichoke juice by a simple one-pot reaction including hydrolysis and dehydration using solid acid under mild condition. Hydrated niobium pentoxide (Nb(2)O(5)·nH(2)O(2)) after pretreatment showed high catalytic activities for dehydration of mono- and polysaccharide to HMF at 433 K in water-2-butanol (2:3 v/v) biphasic system, giving high HMF yield of 89% and 54% from fructose and inulin, respectively. The HMF yield was up to 74% and 65% when inulin and Jerusalem artichoke juice were hydrolyzed by exoinulinase. The solid acid made the process environment-friendly and energy-efficient to convert carbohydrates into bio-fuels and platform chemicals.  相似文献   

20.
Jerusalem artichoke extract or powder was used for astaxanthin production using Phaffia rhodozyma without acidic or enzymatic inulin hydrolysis. The culture medium containing Jerusalem artichoke as carbon source was optimized, and feeding strategies, including constant, exponential, pH-stat, and substrate feedback fed-batch fermentations, were also compared for enhancing the cell biomass and astaxanthin synthesis by P. rhodozyma. Substrate-feedback fed-batch fermentation resulted in the highest dry cell weight of 83.60 g/L, with a carotenoid concentration and yield of 982.50 mg/L and 13.30 mg/g, respectively, under optimized medium components using Jerusalem artichoke extract as carbon source in a 3-L stirred-tank bioreactor. Moreover, 482.50 mg/L of carotenoids and 253.10 mg/L of astaxanthin were obtained by continuous feeding of Jerusalem artichoke powder, which was used as carbon source. Astaxanthin essence with high DPPH-scavenging activity was obtained from the extracted astaxanthin, and the DPPH free radical scavenging rate of 40 ppm astaxanthin essence reached 76.29%. When stored at 4 °C, astaxanthin essence showed the highest stability, with a minimum k value of 0.0099 week−1 and maximum half-life (t1/2) value of 70 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号