首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

2.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

3.
It is well documented that the Toll-like receptor 4 (TLR4)/NF-κB signaling mediates early inflammation during myocardial ischemia and reperfusion. Our previous study has demonstrated that κ-opioid receptor stimulation with U50,488H produces cardioprotective and anti-inflammatory effects. The aim of the present study was to investigate whether κ-opioid receptor stimulation could modulate the TLR4/NF-κB signaling and reduce neutrophil accumulation and TNF-α induction in an ischemia–reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia and reperfusion (MI/R), and MI/R + U50,488H in the absence or presence of Nor-BNI, a selective κ-opioid receptor antagonist. The results demonstrated that after MI/R, the expressions of myocardial TLR4 and NF-κB increased significantly both in ischemia area and risking area. Compared with MI/R, κ-opioid receptor stimulation with U50,488H significantly attenuated the expressions of TLR4 and NF-κB. At the mean time, it also reduced myeloperoxidase (MPO) levels, both serum and myocardial TNF-α production, myocardial infarct sizes (INF/AAR%) and myocardial apoptosis induced by MI/R, all the effects of U50,488H were abolished by Nor-BNI. These data provide evidence for the first time that κ-opioid receptor stimulation inhibits TLR4/NF-κB signaling in the rat heart subjected to MI/R.  相似文献   

4.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

5.

Background

Bone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis and inhibits proliferation in neuronal progenitors as well as many other cell types. It is unknown whether knock-out (KO) of TLR4 will change the paracrine properties of MSC and in turn improve MSC-associated myocardial protection.

Methodology/Principal Findings

This study explored the effect of MSC TLR4 on the secretion of angiogenic factors and chemokines in vitro by using ELISA and cytokine array assays and investigated the role of TLR4 on MSC-mediated myocardial recovery after I/R injury in an isolated rat heart model. We observed that MSC isolated from TLR4 KO mice exhibited a greater degree of cardioprotection in a rat model of myocardial I/R injury. This enhanced protection was associated with increased angiogenic factor production, proliferation and differentiation. TLR4-dificiency was also associated with decreased phosphorylation of PI-3K and AKT, but increased activation of STAT3. siRNA targeting of STAT3 resulted in attenuation of the enhanced cardioprotection of TLR4-deficient MSC.

Conclusions/Significance

This study indicates that TLR4 exerts deleterious effects on MSC-derived cardioprotection following I/R by a STAT3 inhibitory mechanism.  相似文献   

6.

Aim

Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known.

Methods and Results

The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice.

Conclusion

Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R.  相似文献   

7.
Inflammation and pyroptosis play a deleterious role in cardiac dysfunction after myocardial infarction (MI). NLRP3/caspase-1 is a well-established axis in pyroptosis and inflammation. In this study, we examined the effects of TN-C on pyroptosis through NLRP3 is unclear. We constructed 18 TN-C-knockout and 38 WT male mice model and divided into WT sham (n = 16), WT MI (n = 22), TNKO sham (n = 6), TNKO MI (n = 12). Elisa, immunostaining, TTC, qPCR, CCK8, flow cytometry, and western blot, echocardiographic, TUNEL staining technologies were applied. Here, we found a positive correlation between TN-C and NLRP3 in heart tissue via the GEPIA database (r = 0.52, p < 0.05). The findings indicate that TN-C was elevated and peaked on the fifth day after MI. TN-C deficiency alleviated cardiac dysfunction (LVEF, FS, LVIDd, and LVIDs) and cardiomyocyte death. Though the intracellular levels of pyroptosis-related cytokine caspase-1, cleaved caspase-1, NLRP3, IL-18, IL-1β were upregulated both in MI and H2O2 stimulation, knockout of TN-C resisted such injury and alleviated cardiac pyroptosis, which further decreased IL-6, TNF-α, MCP-1 expression. TN-C knockdown inhibited TLR4 expression, reduces the release of downstream factors by inactivating the TLR4/NF-kB pathway, while protects the cardiomyocytes. And TLR4 inhibitor TAK-242 significantly reduced NLRP3 expression levels after MI. We demonstrated for the first time a direct link between MI-induced TN-C upregulation and caspase-1-dependent cardiomyocyte pyroptosis, a process mediated, at least in part, by TLR4/NF-kB/NLRP3 and IL-18, IL-1β signaling pathways. These findings provide new insights into the role of TN-C in post-MI cardiomyocytes' pyroptosis and inflammation.  相似文献   

8.
9.
Objective Physical activity has been shown to improve cardiovascular function and to be beneficial to type 2 diabetic patients. However, the effects of aerobic exercise (AE) on myocardial ischemia/reperfusion (MI/R) are largely unclear. Therefore, the aims of the present study were to determine whether long-term AE can protect the heart against I/R injury, and if so, to investigate the underlying mechanism. Methods Adult male Sprague–Dawley rats were randomly subjected to 8 weeks of either sedentary or free-loading swimming exercise (3 h/day, 5 d/week). Then the animals were subjected to 30 min MI followed by 4 h R. Arterial blood pressure and left ventricular pressure (LVP) were monitored throughout the whole MI/R procedure. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activities were measured spectrophotometrically. Myocardial infarction and myocardial apoptosis (TUNEL analysis) were determined in a blinded manner. Results MI/R caused significant cardiac dysfunction and myocardial apoptosis (strong TUNEL-positive staining). Compared with sedentary group, rats subjected to 8 weeks of AE showed protection against MI/R as evidenced by reduced myocardial infarction (26.8 ± 1.5% vs. 35.3 ± 2.4%, n = 8, P < 0.05), inhibited cardiomyocyte apoptosis (decreased apoptotic index (12.4 ± 1.1% vs. 21.0 ± 1.7%, n = 8, P < 0.01) and decreased myocardial caspase-3 activity), decreased plasma CK and LDH activities and improved recovery of cardiac systolic/diastolic function (including LVSP and ±LVdP/dt) at the end of R. Moreover, exercise resulted in 1.7-fold, 2.5-fold and 2.5-fold increases in Akt expression, Akt phosphorylation and glycogen synthase kinase-3β phosphorylation in I/R myocardium, respectively (n = 3, all P < 0.05). More importantly, treatment with wortmannin, a PI3 kinase inhibitor, 15 min before R not only significantly blocked Akt phosphorylation (P < 0.05) in exercise rats, but also abolished long-term AE-induced cardioprotection for the I/R heart as manifested by increased apoptosis and myocardial infarction, and reduced cardiac function. Conclusion Long-term AE exerts cardioprotective effect against MI/R injury, including anti-cardiomyocyte apoptosis, which is at least partly via PI3 kinase-dependent and Akt-mediated mechanism.  相似文献   

10.
TNF-α inhibitor reportedly protects against myocardial ischemia/reperfusion (MI/R) injury. It can also increase Notch1 expression in inflammatory bowel disease, revealing the regulation of Notch1 signaling by TNF-α inhibitor. However, the interaction between TNF-α inhibitor and Notch1 signaling in MI/R remains unclear. This study aimed to determine the involvement of TNF-α inhibitor with Notch1 in MI/R and delineate the related mechanism. Notch1-specific small interfering RNA (20 μg) or Jagged1 (a Notch ligand, 12 μg) was delivered through intramyocardial injection. Forty-eight hours after injection, mice received 30 min of myocardial ischemia followed by 3 h (for cell apoptosis and oxidative/nitrative stress) or 24 h (for infarct size and cardiac function) of reperfusion. Ten minutes before reperfusion, mice randomly received an intraperitoneal injection of vehicle, etanercept, diphenyleneiodonium, 1400W, or EUK134. Finally, downregulation of Notch1 significantly reversed the alleviation of MI/R injury induced by etanercept, as evidenced by enlarged myocardial infarct size, suppressed cardiac function, and increased myocardial apoptosis. Moreover, Notch1 blockade increased the expression of inducible NO synthase (iNOS) and gp91phox, enhanced NO and superoxide production, and accelerated their cytotoxic reaction product, peroxynitrite. Furthermore, NADPH inhibition with diphenyleneiodonium or iNOS suppression with 1400W mitigated the aggravation of MI/R injury induced by Notch1 downregulation in mice treated with etanercept. Additionally, either Notch1 activation with Jagged1 or peroxynitrite decomposition with EUK134 reduced nitrotyrosine content and attenuated MI/R injury. These data indicate that MI/R injury can be attenuated by TNF-α inhibitor, partly via Notch1 signaling-mediated suppression of oxidative/nitrative stress.  相似文献   

11.

Background

Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure.

Methodology/Principal Findings

MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks.

Conclusions

Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.  相似文献   

12.

Background

The therapeutic efficiency of bone marrow mononuclear cells (BMMNCs) autologous transplantation for myocardial infarction (MI) remains low. Here we developed a novel strategy to improve cardiac repair by preconditioning BMMNCs via angiotensin II type 2 receptor (AT2R) stimulation.

Methods and Results

Acute MI in rats led to a significant increase of AT2R expression in BMMNCs. Preconditioning of BMMNCs via AT2R stimulation directly with an AT2R agonist CGP42112A or indirectly with angiotensin II plus AT1R antagonist valsartan led to ERK activation and increased eNOS expression as well as subsequent nitric oxide generation, ultimately improved cardiomyocyte protection in vitro as measured by co-culture approach. Intramyocardial transplantation of BMMNCs preconditioned via AT2R stimulation improved survival of transplanted cells in ischemic region of heart tissue and reduced cardiomyocyte apoptosis and inflammation at 3 days after MI. At 4 weeks after transplantation, compared to DMEM and non-preconditioned BMMNCs group, AT2R stimulated BMMNCs group showed enhanced vessel density in peri-infarct region and attenuated infarct size, leading to global heart function improvement.

Conclusions

Preconditioning of BMMNCs via AT2R stimulation exerts protective effect against MI. Stimulation of AT2R in BMMNCs may provide a new strategy to improving therapeutic efficiency of stem cells for post MI cardiac repair.  相似文献   

13.
BackgroundMyocardial infarction (MI) is a lethal manifestation of cardiovascular diseases. Oxidative stress, inflammation, and subsequent cell death are known to play crucial roles in the pathogenesis of MI. Despite tremendous developments in interventional cardiology, there is need for novel drugs for the prevention and treatment of MI. For the development of novel drugs, usage of natural products has gained attention as a therapeutic approach for ischemic myocardial injury. Among many popular plant-derived compounds, Nootkatone (NKT), a natural bioactive sesquiterpene, abundantly found in grapefruit, has attracted attention for its plausible health benefits and pharmacological properties.PurposeThe present study investigated the cardioprotective effects of NKT in rats against MI induced by isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist that produces MI in a physiologically relevant manner.MethodsMI was induced in male Wistar albino rats by subcutaneous injection of ISO (85 mg/kg body weight) on 9th and 10th day. Rats were pre- and co-treated with NKT (10 mg/kg) through daily oral administration for eleven days.ResultsISO-induced MI was characterized by a significant decline in cardiac function, increased serum levels of cardiomyocyte injury markers, enhanced oxidative stress, and altered PI3K/Akt and NrF2/Keap1/HO-1 signaling pathways. ISO also elevated the levels of myocardial pro-inflammatory cytokines, promoted lysosomal dysfunction, altered TLR4-NFκB/MAPK signaling, and triggered intrinsic apoptotic pathway in heart tissues. However, NKT administration significantly restored or modulated majority of the altered biochemical and molecular parameters in ISO-treated rats. Furthermore, histopathological observations confirmed the myocardial restoring effect of NKT.ConclusionThe present study concludes the cardioprotective effects and underlying mechanisms of NKT against ISO-induced MI in rats, and suggests that NKT or plants containing NKT could be an alternative to cardioprotective agents in ischemic heart diseases.  相似文献   

14.

Background

The present study investigates the effects and mechanisms of α-Lipoic acid (LA) on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in rat hearts subjected to in vivo myocardial ischemia/reperfusion (MI/R) injury.

Methodology/Principal Findings

Male adult rats underwent 30 minutes of ischemia followed by 3, 24, or 72 h of reperfusion. Animals were pretreated with LA or vehicle before coronary artery ligation. The level of MI/R- induced LDH and CK release, infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined and compared. Western blot analysis was performed to elucidate the mechanism of LA pretreatment. The level of inflammatory cytokine TNF-α released to serum and accumulated in injured myocardium as well as neutrophil accumulation in injured myocardium were also examined after MI/R injury. Our results reveal that LA administration significantly reduced LDH and CK release, attenuated myocardial infarct size, decreased cardiomyocytes apoptosis, and partially preserved heart function. Western blot analysis showed that LA pretreatment up-regulated Akt phosphorylation and Nrf2 nuclear translocation while producing no impact on p38MAPK activation or nitric oxide (NO) production. LA pretreatment also increased expression of HO-1, a major target of Nrf2. LA treatment inhibited neutrophil accumulation and release of TNF-α. Moreover, PI3K inhibition abolished the beneficial effects of LA.

Conclusions/Significance

This study indicates that LA attenuates cardiac dysfunction by reducing cardiomyoctyes necrosis, apoptosis and inflammation after MI/R. LA exerts its action by activating the PI3K/Akt pathway as well as subsequent Nrf2 nuclear translocation and induction of cytoprotective genes such as HO-1.  相似文献   

15.

Aims

Several studies suggest that circulating bone marrow derived stem cells promote the regeneration of ischemic tissues. For hematopoietic stem cell transplantation combinatorial granulocyte-colony stimulating factor (G-CSF)/Plerixafor (AMD3100) administration was shown to enhance mobilization of bone marrow derived stem cells compared to G-CSF monotherapy. Here we tested the hypothesis whether combinatorial G-CSF/AMD3100 therapy has beneficial effects in cardiac recovery in a mouse model of myocardial infarction.

Methods

We analyzed the effect of single G-CSF (250 µg/kg/day) and combinatorial G-CSF/AMD3100 (100 µg/kg/day) treatment on cardiac morphology, vascularization, and hemodynamics 28 days after permanent ligation of the left anterior descending artery (LAD). G-CSF treatment started directly after induction of myocardial infarction (MI) for 3 consecutive days followed by a single AMD3100 application on day three after MI in the G-CSF/AMD3100 group. Cell mobilization was assessed by flow cytometry of blood samples drawn from tail vein on day 0, 7, and 14.

Results

Peripheral blood analysis 7 days after MI showed enhanced mobilization of white blood cells (WBC) and endothelial progenitor cells (EPC) upon G-CSF and combinatorial G-CSF/AMD3100 treatment. However, single or combinatorial treatment showed no improvement in survival, left ventricular function, and infarction size compared to the saline treated control group 28 days after MI. Furthermore, no differences in histology and vascularization of infarcted hearts could be observed.

Conclusion

Although the implemented treatment regimen caused no adverse effects, our data show that combinatorial G-CSF/AMD therapy does not promote myocardial regeneration after permanent LAD occlusion.  相似文献   

16.

Background

Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy in clinical settings. Despite convincing evidence of the critical role played by circulating humoral mediators, their actual identities remain unknown. In this study, we aimed to identify RIPC-induced humoral mediators using a proteomic approach.

Methods

and Results Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5′) or 10-min (RIPC 10′) reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were analyzed using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). Three protein peaks were selected for their significant increase in RIPC 10′. They were identified and confirmed as apolipoprotein A-I (ApoA-I). Additional rats were exposed to myocardial ischemia-reperfusion (I/R) and assigned to one of the following groups RIPC+myocardial infarction (MI) (10-min limb ischemia followed by 10-min reperfusion initiated 20 minutes prior to myocardial I/R), ApoA-I+MI (10 mg/kg ApoA-I injection 10 minutes before myocardial I/R), and MI (no further intervention). In comparison with untreated MI rats, RIPC reduced infarct size (52.2±3.7% in RIPC+MI vs. 64.9±2.6% in MI; p<0.05). Similarly, ApoA-I injection decreased infarct size (50.9±3.8%; p<0.05 vs. MI).

Conclusions

RIPC was associated with a plasmatic increase in ApoA-I. Furthermore, ApoA-I injection before myocardial I/R recapitulated the cardioprotection offered by RIPC in rats. This data suggests that ApoA-I may be a protective blood-borne factor involved in the RIPC mechanism.  相似文献   

17.

Introduction

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently been shown to express key cardiac proteins and improve in vivo cardiac function when administered following myocardial infarction. However, the efficacy of hiPSC-derived cell therapies, in direct comparison to current, well-established stem cell-based therapies, is yet to be elucidated. The goal of the current study was to compare the therapeutic efficacy of human mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial infarction (MI).

Methods

Male athymic nude hyrats were subjected to permanent ligation of the left-anterior-descending (LAD) coronary artery to induce acute MI. Four experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC), and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and hMSCs were labeled with superparamagnetic iron oxide (SPIO) in vitro to track the transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI, cardiac MRI was performed to track the transplanted cells in the infarct heart. Additionally, echocardiography (M-mode) was performed to evaluate the cardiac function. Immunohistological and western blot studies were performed to assess the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues.

Results

Echocardiography data showed a significantly improved cardiac function in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological studies showed expression of connexin-43, α-actinin and myosin heavy chain in engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs group when compared to hMSCs or MI groups. Overall, this study demonstrated improved cardiac function with decreased fibrosis with both hiPSC-CMs and hMSCs groups when compared with MI group.  相似文献   

18.

Background

To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI).

Methodology/Principal Finding

Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI.

Conclusion/Significance

These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium.  相似文献   

19.
Insulin has been shown to possess significant anti-apoptotic effect in myocardial ischemia/reperfusion (MI/R). However, the contribution by this protection of insulin to the prolonged cardiac function in rats subjected to ischemia remains unclear. The present study attempted to test whether early insulin treatment influences adverse prolonged post-ischemic cardiac structural and functional changes. Adult male rats were subjected to left anterior descending coronary artery occlusion and were randomized to receive one of the following treatments: saline (4 ml/kg/h i.v. injection beginning 10 min before the ischemia and continuing for 2 h), insulin (60 U/l, i.v. injection following the same routine, and hypodermic injection of insulin (0.5 U/ml, 1 ml/kg/d) for 3 days after the ischemia surgery) or insulin plus wortmannin (15 μg/kg i.v. injection 15 min before each insulin administration). Treatment with insulin significantly reduced infarct size, decreased plasma creatine kinase and lactate dehydrogenase activities, decreased apoptosis index and caspase-3 activity (all P < 0.01 vs. saline), and improved cardiac function 24 h after ischemia. Importantly, at the end of 4 weeks after the ischemia surgery, MI rats receiving insulin treatment showed smaller left ventricle (LV) cavity and thicker systolic interventricular septum, and increased cardiac ejection fraction and LV fractional shortening (all P < 0.05 vs. saline). Inhibition of insulin signaling with wortmannin not only blocked insulin’s anti-apoptotic effect, but also almost completely abolished effects of insulin on cardiac structure and function. These data indicate that inhibition of apoptosis by early insulin treatment alleviates chronic adverse changes in post-ischemic cardiac structure and function. Wenjuan Xing and Wenjun Yan contributed equally to this study.  相似文献   

20.

Background  

Mesenchymal stem cells (MSCs)-based regenerative therapy is currently regarded as an alternative approach to salvage the acute myocardial infarcted hearts. However, the efficiency of MSCs transplantation is limited by lower survival rate of engrafted MSCs. In previous study, we found that 1.0 μg/ml Lipopolysaccharide (LPS) could protect MSCs against apoptosis induced by oxidative stress and meanwhile enhance the proliferation of MSCs. Therefore, in the present study, we firstly preconditioned MSCs with 1.0 μg/ml LPS, then transplanted MSCs into ischemic myocardium, and observed the survival and cardiac protective capacity of MSCs in a rat model of acute myocardial infarction. Furthermore, we tried to explore the underlying mechanisms and the role of Toll-like receptor-4 (TLR4) in the signal pathway of LPS-induced cardiac protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号