首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports our latest progress in developing low-loss and low-crosstalk silicon MMIC interconnects for millimeter-wave applications. The proposed silicon/metal/polyimide (SIMPOL) structure based on multilayer polyimide technology is extremely effective in reducing noise crosstalk, and also provides very low line loss, even at the millimeter-wave regime. The measurement results of the developed SIMPOL structures demonstrate extremely low noise crosstalk (<-40 dB) in the entire frequency range (up to 50 GHz), which is limited by the dynamic range of the measurement equipment, and excellent insertion loss (<-0,25 dB/mm) up to 45 GHz. In addition, the SIMPOL concept is applied for the first time successfully in the design and fabrication of branch-line hybrids at millimeter-wave frequencies, 30 and 37 GHz  相似文献   

2.
W-band single-layer vertical transitions   总被引:1,自引:0,他引:1  
Vertical single-layer transitions operating at W-band frequencies have been developed. The designs are uniplanar, use electromagnetic coupling, and do not require via holes or air bridges. The first transition uses coplanar-waveguide-mode coupling and results in an insertion loss of better than 0.6 dB over the whole band, with a loss of 0.25 dB from 85 to 110 GHz. The return loss is better than -10 dB from 75 to 110 GHz. The second transition uses microstrip-mode coupling and results in a 0.2-dB insertion loss over the whole W-band. These transitions can prove very useful for millimeter-wave packaging and vertical interconnects  相似文献   

3.
A low-profile millimeter-wave substrate integrated waveguide (SIW) power divider/combiner is presented in this paper. The simplified model of this compact SIW power dividing/combining structure has been developed. Analysis based on equivalent circuits gives the design formula for perfect power dividing/combining. In order to verify the validity of the design method, a four-way SIW power divider/combiner circuit operating at Ka band is designed, fabricated and measured. Good agreement between simulated and measured results is found for the proposed passive power divider/combiner. Experiments on the four-way passive divider/combiner back-to-back design demonstrate a minimum overall insertion loss of 1.5 dB at 31.1 GHz, corresponding to a power-combining efficiency of 84%. The measured 10-dB return loss bandwidth is demonstrated to be 2.2 GHz, and its 0.5-dB bandwidth was 2 GHz.  相似文献   

4.
Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates   总被引:1,自引:0,他引:1  
This paper presents state-of-the-art RF microelectromechanical (MEMS) phase shifters at 75-110 GHz based on the distributed microelectromechanical transmission-line (DMTL) concept. A 3-bit DMTL phase shifter, fabricated on a glass substrate using MEMS switches and coplanar-waveguide lines, results in an average loss of 2.7 dB at 78 GHz (0.9 dB/bit). The measured figure-of-merit performance is 93/spl deg//dB-100/spl deg//dB (equivalent to 0.9 dB/bit) of loss at 75-110 GHz. The associated phase error is /spl plusmn/3/spl deg/ (rms phase error is 1.56/spl deg/) and the reflection loss is below -10 dB over all eight states. A 2-bit phase shifter is also demonstrated with comparable performance to the 3-bit design. It is seen that the phase shifter can be accurately modeled using a combination of full-wave electromagnetic and microwave circuit analysis, thereby making the design quite easy up to 110 GHz. These results represent the best phase-shifter performance to date using any technology at W-band frequencies. Careful analysis indicates that the 75-110-GHz figure-of-merit performance becomes 150/spl deg//dB-200/spl deg//dB, and the 3-bit average insertion loss improves to 1.8-2.1 dB if the phase shifter is fabricated on quartz substrates.  相似文献   

5.
W-band CPW RF MEMS circuits on quartz substrates   总被引:3,自引:0,他引:3  
This paper presents W-band coplanar waveguide RF microelectromechanical system (MEMS) capacitive shunt switches with very low insertion loss (-0.2 to -0.5 dB) and high-isolation (/spl les/ -30 dB) over the entire W-band frequency range. It is shown that full-wave electromagnetic modeling using Sonnet can predict the performance of RF MEMS switches up to 120 GHz. Also presented are W-band 0/spl deg//90/spl deg/ and 0/spl deg//180/spl deg/ switched-line phase shifters with very good insertion loss (1.75 dB/bit at 90 GHz) and a wide bandwidth of operation (75-100 GHz). These circuits are the first demonstration of RF MEMS digital-type phase shifters at W-band frequencies and they outperform their solid-state counterparts by a large margin.  相似文献   

6.
A configuration of wideband bandpass filter (BPF) with multiple notched bands is presented. Proposed BPF is based on stepped-impedance resonator. By utilising dual stepped-impedance resonators in folded topology a rectangular-ring resonator is formed. Two notched bands in the passband are achieved without using asymmetrical coupled lines. In other words, the filter configuration is capable of producing notched bands. It should be noted that additional information on filter performance and design is presented. Measurement results are presented to approve propounded filter characteristics. The measured passband of the second proposed filter is from 3.68 to 10.2 GHz with insertion loss of –1.76 dB in the first passband at the centre frequency of 4.45 GHz. The measured notched band frequencies are about 5.45 and 7.95 GHz with rejection of –21.77 and –20.82 dB, respectively. The return loss in the passband is better than –11.4 dB.  相似文献   

7.
A new concept for a millimeter-wave amplifier that uses circuit, waveguide, and spatial power combining is demonstrated. The passive array has a free-space-to-microstrip insertion loss below -1.5 dB from 30 to 44 GHz. Small-signal measurements of the active array reveal an average gain of 5 dB from 41 to 46 GHz and a maximum gain of 6.4 dB at 45.6 GHz. Large-signal measurements reveal a linear power gain of 2 dB and an output power of 23.7 dBm at the 1-dB compression point at 44 GHz  相似文献   

8.
This paper reports on the development and optimization of 0/1-level packaged coplanar waveguide (CPW) lines and radio-frequency microelectromechanical systems (RF-MEMS) switches up to millimeter-wave frequencies. The 0-level package consists of an on-chip cavity obtained by flip-chip mounting a capping chip over the RF-MEMS device using BenzoCyclobutene (BCB) as the bonding and sealing material. The 0-level coplanar RF feedthroughs are implemented using BCB as the dielectric; gold stud-bumps and thermocompression are used for realizing the 1-level package. The 0-level packaged switches have been flip-chip mounted on a multilayer thin-film interconnect substrate using a high-resistivity Si carrier with embedded passives and substrate cavities. The insertion loss of a single 0/1-level transition is below -0.15 dB at 50 GHz. The measured return loss of a 0/1-level packaged 50-Omega CPW line remains better than -19 dB up to 71 GHz and better than -15 dB up to 90 GHz. It is shown that the leak rate of BCB sealed cavities depends on the BCB width, and leak rates as low as 10-11 mbar.l/s are measured for large BCB widths (> 800 mum), dropping to 10-8 mbar.l/s for BCB widths of around 100 mum. Depending on the bonding conditions, shear strengths as high as 150 MPa are achieved.  相似文献   

9.
As an enabling feed/interconnect element for various millimeter wave components, dual polarization quasi-transverse electromagnetic (TEM) waveguides at W-band (75-110 GHz) are investigated with two-dimensional electromagnetic crystal (EMXT) surfaces as the four boundary walls instead of the regular metallic walls. A 2.54 mm x 2.54 mm quasi-TEM square waveguide prototype with a length of 2 mm is fabricated and demonstrated. Both eigenmode and full-wave EM simulations of the prototype verify the quasi-TEM propagation at the designed frequency of 95 GHz with a bandwidth of more than 10% and the low insertion loss for the entire W-band. The prototype waveguide is measured in a WR-10 fixture and the results agree with simulations well. To better understand the loss mechanisms, various design and packaging parameters are studied. Undesirable resonant surface modes have been identified as a critical cause of loss at specific frequencies. This type of waveguides may also be useful for spatial power combining, low loss interconnects, and packaging for millimeter wave systems.  相似文献   

10.
In this paper, a W-band single pole single throw (SPST) switch based on a novel PIN diode model is presented. The PIN diode is modeled using a full-wave electromagnetic (EM) simulator and its parasitic parameters under both forward and reverse bias states are described by a T-network. By this approach, the measurement-based model, which is usually a must for high performance switch design, is no longer necessary. A compensation structure is optimized to obtain a high isolation of the switch. Accordingly, a W-band SPST switch is designed using a full wave EM simulator. Measurement results agree very well with simulated ones. Our measurements show that the developed switch has less than 1.5 dB insertion loss under the ??on?? state from 88 GHz to 98 GHz. Isolation greater than 30 dB over 2 GHz bandwidth and greater than 20 dB over 5 GHz bandwidth can be achieved at the center frequency of 94 GHz under the ??off?? state.  相似文献   

11.
A four-way waveguide power divider has been developed in sub-THz band. The waveguide power divider was achieved with the improved H-plane T-junction structure. By tuning the depth and width at the junction of the waveguide, the input impendence was matched and the two-way output power amplitude and phase were at the same level. The four-way power divider was realized by the concatenation of two same T-junction at the two output ports. A sub-THz four-way passive power combiner is designed, fabricated and measured. The measure results show that the measured insertion loss of the fabricated four-way passive power combiner is less than 1.2 dB whereas the input return loss is greater than 14.8 dB from 97.5 to 101.7 GHz. Experiments on the sub-THz four-way passive power combiner show that a minimum insertion loss of 1 dB has been achieved at about 99.5 GHz. The measured minimum insertion loss of the waveguide power divider is half of the insertion loss for the entire passive power combiner (0.5 dB), which corresponds to a power-combining efficiency of 89 %. The measured results agree with the simulated ones closely.  相似文献   

12.
基于基片集成波导(substrate integrated waveguide,SIW)结构设计了两款四阶的耦合带通滤波器,使用三维全波电磁场仿真软件HFSS对设计的两款滤波器进行了仿真设计和优化.由仿真结果分析得出,两款滤波器的工作频率均位于毫米波频段.第一款SIW滤波器实现了切比雪夫型响应,中心频率为20 GHz,带宽为2 GHz,通带内的插入损耗低于1.5 dB,回波损耗低于-20 dB,在阻带中对信号的衰减程度可以达到50 dB.第二款SIW滤波器实现了准椭圆函数型的响应,中心频率为29.1 GHz,带宽为300 MHz,通带内的插入损耗低于1 dB,回波损耗低于-20 dB,在通带到阻带的过渡中实现了两个陷波点.仿真结果表明,在毫米波滤波器设计中引入SIW结构,有利于优化滤波器尺寸,得到较好的滤波器性能指标,是毫米波滤波器发展的一个重要方向.  相似文献   

13.
In this article, a novel microstrip lowpass filter (LPF) with specifications such as sharp cut-off, wide stopband, low insertion loss and high return loss using tapered resonator is presented. The LPF has cut-off frequency of 1.11 GHz, where unwanted harmonics are suppressed by novel tapered cells. The bandwidth is enhanced, and the size is reduced as compared to the conventional tapered filter. The transition band is approximately 0.29 GHz from 1.11 to 1.4 GHz with corresponding attenuation levels of –3 and –20 dB, respectively. The stopband with greater than –20 dB rejection is from 1.4 to 8.9 GHz, insertion loss in the passband is less than 0.1 dB, return loss is less than –18 dB and the overall size of the filter is 0.12 × 0.073 λg. The proposed filter is fabricated and measured. The simulation and measurement results are in good agreement. This LPF is designed for microwave communication applications, especially wireless video transmitters.  相似文献   

14.
This paper presents a novel microstrip lowpass filter with sharp roll-off and ultra-wide stopband using stepped-impedance resonator and bended transmission line structure. The filter includes stepped-impedance prototype filter and stepped-impedance compact microstrip resonator cells that are combined in one structure. The proposed filter has good specifications such as sharp roll-off, ultra-wide stopband and low insertion loss. The transition band is approximately 0.25 GHz from 1.75 to 2 GHz with corresponding attenuation levels of ?3 and ?40 dB. The attenuation level in the stopband is better than ?20 dB that is achieved from 1.94 to 23 GHz, and the insertion loss in the passband is less than 0.4 dB. The proposed filter is fabricated and measured, and the simulation and measurement results are found to be in good agreement with each other.  相似文献   

15.
We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3?±?0.1 dB per miter bend using a VNA; and 0.22?±?0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05?±?0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications.  相似文献   

16.
Wideband millimeter-wave branch-line couplers have been demonstrated using micromachined air-filled rectangular-coaxial lines supported by quarter-wavelength stubs. The coaxial lines are constructed by bonding five layers of gold-plated silicon or SU8 slices. The measured coupler shows an insertion loss of 3.2–4.0 dB in the coupled and thru ports between the frequencies 31.3–47.6 GHz. The isolation is better than 12.8 dB, and the return loss less than $-{hbox{10 dB}}$. In addition to providing support, the stubs enhance bandwidth when properly placed.   相似文献   

17.
This paper aims to demonstrate the utility of silicon interconnects for radio-frequency (RF) microelectromechanical system (MEMS) devices that are packaged using a wafer-scale encapsulation process. Design and fabrication steps for the packaged interconnects are described. Measurement results show that encapsulated devices can be operated at frequencies up to 6 GHz with less than 1 dB insertion loss from the through-package silicon interconnects. This paper also describes a simple and accurate lumped-element model for simulating the performance of packaged silicon interconnects. The model is verified with S-parameter measurements from 50 MHz to 6 GHz. The modeling method and extracted values are intended to aid in the design and simulation of RF MEMS devices packaged using this technology.   相似文献   

18.
A new compact millimeter-wave dual-mode ring resonator bandpass filter is proposed. This filter has a 15% bandwidth at 58 GHz with 3.4 dB insertion loss. Input/output lines and ring resonator are directly connected to obtain tight coupling, and an open-end stub is inserted for dual-mode operation. This filter is fabricated on a GaAs wafer by using MEMS technology and can be applied for the millimeter- wave SoC.  相似文献   

19.
基于小孔耦合理论和电磁场全波分析法,根据正向叠加和反向抵消原则,确定耦合孔半径、间距和数量,并通过HFSS 软件进行仿真设计,实现了毫米波段定向耦合器的工作频段展宽;提出了一种新颖的波导腔体三层结构设计方案,解决了波导接触面缝隙切割电流引起的毫米波辐射问题,实现了波导无辐射装配,提高了器件的稳定性和可靠性。成功研制的毫米波W 波段宽带、高耦合度定向耦合器在88 ~102 GHz 频段传输损耗0.6 dB,两路输出幅度误差优于±0.3 dB,隔离度大于18 dB。  相似文献   

20.
Coutant  M. Chang  K. 《Electronics letters》2000,36(25):2076-2078
A bandwidth optimised vertical interconnect using a rectangular waveguide to couple two microstrip lines is presented. The electrically long interconnect gives low insertion loss and large bandwidth, in contrast to other indirectly and directly coupled interconnects. Experimental results show <1.5 dB insertion loss and <20 dB return loss over a wide bandwidth 8.1-0.7 GHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号