首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Introduction

It has been shown in some articles that genetic and epigenetic abnormalities cannot only be found in tumor tissues but also in adjacent regions that appear histologically normal. This phenomenon is metaphorically called field cancerization or field defect. Field cancerization is regarded as clinically significant because it is assumed to be an important factor in local recurrence of cancer. As the field showing these molecular abnormalities may not be removed completely by surgery, these changes might lead to neoplasms and subsequent transformation to a tumor. We aimed to investigate the applicability of the methylation status of six tumor suppressor genes as biomarkers for detecting field cancerization in breast cancer.

Methods

The promoter methylation status of CCND2, DAPK1, GSTP1, HIN-1, MGMT and RASSF1A was determined by methylation-sensitive high-resolution melting (MS-HRM) analysis. MS-HRM methods for CCND2, MGMT and RASSF1A were developed in-house, primer sequences for DAPK1, GSTP1 and HIN-1 have already been published. Biopsy samples were taken from tumor, tumor-adjacent and tumor-distant tissue from 17 breast cancer patients. Normal breast tissues of four healthy women served as controls.

Results

All MS-HRM methods proved to be very sensitive. LODs were in the range from 0.1 to 1.5 %, LOQs ranged from 0.3 to 5.3 %. A total of 94 %, 82 % and 65 % of the tumors showed methylation of RASSF1A, HIN-1 and MGMT promoters, respectively. The methylation status of these promoters was significantly lower in tumor-distant tissues than in tumor tissues. Tumor-adjacent tissues showed higher methylation status of RASSF1A, HIN-1 and MGMT promoters than tumor-distant tissues, indicating field cancerization. The methylation status of the HIN-1 promoter in tumor-adjacent tissues was found to correlate strongly with that in the corresponding tumors (r = 0.785, p < 0.001), but not with that in the corresponding tumor-distant tissues (r = 0.312, p = 0.239).

Conclusions

Among the gene promoters investigated, the methylation status of the HIN-1 promoter can be considered the best suitable biomarker for detecting field cancerization. Further investigation is needed to test whether it can be used for defining surgical margins in order to prevent future recurrence of breast cancer.  相似文献   

3.

Introduction

Estrogen receptor (ER)-positive breast cancers are considered prognostically more favorable than ER-negative tumors, whereas human epidermal growth factor receptor (HER)2/neu-positive breast cancers are associated with worse prognosis. The objective of the present study was to determine whether ER-positive and ER-negative status relates to epigenetic changes in breast cancer-related genes. To evaluate epigenetic differences in tumor-related genes relating to ER and HER2/neu status of primary tumors, we examined the promoter methylation status of the promoter region CpG islands of eight major breast tumor-related genes (RASSF1A, CCND2, GSPT1, TWIST, APC, NES1, RARβ2, and CDH1).

Methods

Paired ER-positive (n = 65) and ER-negative (n = 65) primary breast tumors (n = 130) matched for prognostic factors were assessed. DNA was extracted from paraffin-embedded tumor tissue after microdissection, and methylation-specific PCR and capillary-array electrophoresis analysis were performed.

Results

In early stages of tumor progression (T1 and N0), RASSF1A and CCND2 were significantly (P < 0.05) more methylated in ER-positive than in ER-negative tumors. GSTP1 hypermethylation was more frequent in the lymph node metastasis positive group than in the negative group. Double negative (ER-negative, HER2/neu-negative) breast cancers had significantly lesser frequencies of RASSF1A, GSTP1, and APC methylation (P < 0.0001, P < 0.0001, and P = 0.0035, respectively). Both ER and HER2/neu status correlated independently with these epigenetic alterations.

Conclusion

We demonstrated significant differences in tumor-related gene methylation patterns relevant to ER and HER2/neu status of breast tumors. This may be of significance in the assessment of targeted therapy resistance related to ER and HER2/neu status in breast cancer patients.  相似文献   

4.

Introduction

For early detection of breast cancer, the development of robust blood-based biomarkers that accurately reflect the host tumor is mandatory. We investigated DNA methylation in circulating free DNA (cfDNA) from blood of breast cancer patients and matched controls to establish a biomarker panel potentially useful for early detection of breast cancer.

Methods

We examined promoter methylation of seven putative tumor-suppressor genes (SFRP1, SFRP2, SFRP5, ITIH5, WIF1, DKK3, and RASSF1A) in cfDNA extracted from serum. Clinical performance was first determined in a test set (n = 261 sera). In an independent validation set (n = 343 sera), we validated the most promising genes for further use in early breast cancer detection. Sera from 59 benign breast disease and 58 colon cancer patients were included for additional specificity testing.

Results

Based on the test set, we determined ITIH5 and DKK3 promoter methylation as candidate biomarkers with the best sensitivity and specificity. In both the test and validation set combined, ITIH5 and DKK3 methylation achieved 41% sensitivity with a specificity of 93% and 100% in healthy and benign disease controls, respectively. Combination of these genes with RASSF1A methylation increased the sensitivity to 67% with a specificity of 69% and 82% in healthy controls and benign disease controls, respectively.

Conclusions

Tumor-specific methylation of the three-gene panel (ITIH5, DKK3, and RASSF1A) might be a valuable biomarker for the early detection of breast cancer.  相似文献   

5.
6.
To investigate the diagnostic potential of DNA methylation-based markers in tissue samples of DCIS, we examined the prevalence and extent of methylation in breast ductal carcinoma in situ (DCIS) samples from North American and Korean women. Quantitative multiplex-methylation specific PCR (QM-MSP) of ten genes was performed. The methylation level of APC1, Cyclin D2, HIN-1, RASSF1A and Twist singly, and cumulative methylation of all ten genes was significantly higher in DCIS compared to normal tissues for both groups. A three-gene panel (APC1, HIN-1 and RASSF1A) QM-MSP distinguished between DCIS and normal breast tissues with a sensitivity of 94 to 96% and a specificity of 81 to 87%. Methylation levels of these three genes in DCIS were higher than those of hyperplasia or adjacent normal appearing tissues in Korean women. Comparing North American and Korean DCIS, statistically significant differences in methylation levels were found for CDH1, ERalpha and RAR-beta. Quantification of gene methylation combined with immunohistochemistry in a small subset of tumors suggested that methylation may precede loss of protein expression for ERalpha. Our study demonstrated that methylation profiles of DCIS between North American and Korean women were similar. Methylation status of a panel of genes measured in a quantitative manner accurately discriminated between normal and DCIS tissues of both groups. For both North American and Korean women, QM-MSP analysis of a key panel of genes may be useful as an ancillary tool for DCIS detection in breast tissues.  相似文献   

7.

Introduction

Ductal carcinoma in situ (DCIS) is a non-invasive lesion of the breast that is frequently detected by mammography and subsequently removed by surgery. However, it is estimated that about half of the detected lesions would never have progressed into invasive cancer. Identifying DCIS and invasive cancer specific epigenetic lesions and understanding how these epigenetic changes are involved in triggering tumour progression is important for a better understanding of which lesions are at risk of becoming invasive.

Methods

Quantitative DNA methylation analysis of ABCB1, CDKN2A/p16 INK4a , ESR1, FOXC1, GSTP1, IGF2, MGMT, MLH1, PPP2R2B, PTEN and RASSF1A was performed by pyrosequencing in a series of 27 pure DCIS, 28 small invasive ductal carcinomas (IDCs), 34 IDCs with a DCIS component and 5 normal breast tissue samples. FOXC1, ABCB1, PPP2R2B and PTEN were analyzed in 23 additional normal breast tissue samples. Real-Time PCR expression analysis was performed for FOXC1.

Results

Aberrant DNA methylation was observed in all three diagnosis groups for the following genes: ABCB1, FOXC1, GSTP1, MGMT, MLH1, PPP2R2B, PTEN and RASSF1A. For most of these genes, methylation was already present at the DCIS level with the same frequency as within IDCs. For FOXC1 significant differences in methylation levels were observed between normal breast tissue and invasive tumours (P < 0.001). The average DNA methylation levels were significantly higher in the pure IDCs and IDCs with DCIS compared to pure DCIS (P = 0.007 and P = 0.001, respectively). Real-time PCR analysis of FOXC1 expression from 25 DCIS, 23 IDCs and 28 normal tissue samples showed lower gene expression levels of FOXC1 in both methylated and unmethylated tumours compared to normal tissue (P < 0.001). DNA methylation levels of FOXC1, GSTP1, ABCB1 and RASSF1A were higher in oestrogen receptor (ER) positive vs. ER negative tumours; whereas methylation levels of FOXC1, ABCB1, PPP2R2B and PTEN were lower in tumours with a TP53 mutation.

Conclusions

Quantitative methylation analysis identified ABCB1, FOXC1, PPP2R2B and PTEN as novel genes to be methylated in DCIS. In particular, FOXC1 showed a significant increase in the methylation frequency in invasive tumours. Low FOXC1 gene expression in both methylated and unmethylated DCIS and IDCs indicates that the loss of its expression is an early event during breast cancer progression.  相似文献   

8.

Purpose

Tumor suppressor gene (TSG) silencing through promoter hypermethylation plays an important role in cancer development. The aim of this study was to assess the extent of methylation of the RASSF1A and APC TSG promoters in ovarian epithelial adenomas, low malignant potential tumours and carcinomas in order to reveal a role for epigenetic TSG silencing in the development of these ovarian malignancies.

Method

The promoter methylation status of the RASSF1A and APC genes was assessed in 19 benign cystadenomas, 14 low malignant potential (LMP) tumours, and 86 carcinomas using methylation specific PCR (MSP).

Results

The methylation frequencies of the RASSF1A and APC gene promoters in benign cystadenomas were found to be 37?% and 16?%, respectively. The LMP tumours exhibited RASSF1A and APC gene promoter methylation frequencies of 50?% and 28?%, respectively, whereas the carcinomas exhibited methylation frequencies of 58?% and 29?%, respectively. Methylation of either the RASSF1A or the APC gene promoter was encountered in 58?% of the invasive carcinomas.

Conclusion

The observed aberrant methylation frequencies of the RASSF1A and APC gene promoters indicate that an accumulation of epigenetic events at these specific TSG promoters may be associated with the malignant transformation of benign cystadenomas and LMP tumours to carcinomas.  相似文献   

9.
IntroductionSystemic methylation changes may be a diagnostic marker for tumor development or prognosis. Here, we investigate the relationship between gene methylation in lung tumors relative to normal lung tissue and whether DNA methylation changes can be detected in paired blood samples.Material and MethodsSixty-five patients were enrolled in a surgical case series of non–small-cell lung carcinoma at a single institution. By using bisulfite pyrosequencing, CpG methylation was quantified at 5 genes (RASSF1A, CDH13, MGMT, ESR1, and DAPK) in lung tumor, pathologically normal lung tissue, and circulating blood from enrolled cases.ResultsThe analyses of methylation in tumors compared with normal lung tissue identified higher methylation of CDH13, RASSF1A, and DAPK genes, whereas ESR1 and MGMT methylation did not differ significantly between these tissue types. We then examined whether the 3 aberrantly methylated genes could be detected in blood. The difference in methylation observed in tumors was not reflected in methylation status of matching blood samples, which indicated a low feasibility of detecting lung cancer by analyzing these genes in a blood-based test. Lastly, we probed whether tumor methylation was associated with clinical and demographic characteristics. Histology and sex were associated with methylation at the CDH13 gene, whereas, stage was associated with methylation at MGMT.ConclusionOur results showed higher methylation of RASSF1A, CDH13, and DAPK genes in lung tumors compared with normal lung. The lack of reflection of these methylation changes in blood samples from patients with non–small-cell lung carcinoma indicates their poor suitability for a screening test.  相似文献   

10.
Promoter hypermethylation of several tumour suppressor genes often occurs during breast carcinogenesis, but little is known about epigenetic silencing in the possible precursor columnar cell lesion (CCL). Promoter hypermethylation of 50 different tumour suppressor genes was assessed in normal breast tissue (N?=?10), CCL (N?=?15), ductal carcinoma in situ (DCIS) grade I originating in CCL (N?=?5) and paired CCL (N?=?15) with DCIS (N?=?7) and/or invasive carcinoma (N?=?14) by Methylation-specific multiplex ligation-dependent probe amplification. Increasing mean cumulative methylation levels were found from normal breast tissue to CCL to DCIS and invasive carcinoma (P?<?0.001) with similar methylation levels in DCIS and invasive carcinoma. Methylation levels and frequencies (in the overall analysis and analysis of only the synchronous lesions) were the highest for RASSF1, CCND2, ID4, SCGB3A1 and CDH13. The methylation levels of ID4, CCND2, and CDH13 increased significantly from normal breast tissue to CCL and to DCIS/invasive carcinoma. RASSF1, SCGB3A1 and SFRP5 had significant higher methylation levels in CCL compared to normal breast tissue, but showed no significant differences between CCL, DCIS and invasive carcinoma. Also, no difference was found between CCLs with and without atypia, or CCLs with or without synchronous cancer. In conclusion, promoter hypermethylation for several established tumour suppressor genes is already present in CCLs, underlining that promoter hypermethylation is an early event in breast carcinogenesis. Atypia in CCL or the presence of synchronous more advanced lesions does not seem to be accompanied by higher methylation levels.  相似文献   

11.
CpG island methylator phenotype (CIMP) involves methylation targeted toward the promoters of multiple genes. We determined a methylation profile of tumor-related genes in serum of sporadic breast cancer (SBC). The multigene methylation was examined by methylation-specific polymerase chain reaction assay in serum of 50 SBCs and 50 paired nontumors, and CIMP+ was defined as having three genes that are concordantly methylated. The methylation frequency of ten genes in serum of 50 SBCs varied from 10% in FHIT to 74% in RASSF1A. The methylation status of RASSF1A, BRCA1, p16, CDH1, ER, RARβ2, APC, and DAPK was significantly correlated with SBC and nontumor serum (P?<?0.05). Methylation of at least one gene was found in 92% SBC; CIMP was more frequent in SBC than nontumor serum (P?<?0.001). There was a significant association between CIMP and methylation of RASSF1A, BRCA1, p16, CDH1, ER, RARβ2, APC, and DAPK (P?<?0.05); the methylation link profile of CDH1, RASSF1A, BRCA1, and RARβ2 as breast cancer marker may contribute high sensitivity (90%) and specificity (88%). ER and RARβ2 methylation was associated with elevated serum CA153 levels in 39 SBC samples with CIMP+ (P?<?0.05). Multivariate analysis showed that living area of patients was found to provide independent prognostic information associated with a relative risk of tumor recurrence of 5.3. Multigene-specific methylation profile in serum was association with the recurrence risk of rural SBC, and positive correlation of CIMP can serve as a promising molecular marker of SBC.  相似文献   

12.

Background

The Ras-assocation family (RASSF) of tumour suppressor genes (TSGs) contains 10 members that encode proteins containing Ras-assocation (RA) domains. Several members of the RASSF family are frequently epigenetically inactivated in cancer, however, their role in leukaemia has remained largely uninvestigated. Also, RASSF10 is a predicted gene yet to be experimentally verified. Here we cloned, characterised and demonstrated expression of RASSF10 in normal human bone marrow. We also determined the methylation status of CpG islands associated with RASSF1–10 in a series of childhood acute lymphocytic leukaemias (ALL) and normal blood and bone marrow samples.

Results

COBRA and bisulphite sequencing revealed RASSF6 and RASSF10 were the only RASSF members with a high frequency of leukaemia-specific methylation. RASSF6 was methylated in 94% (48/51) B-ALL and 41% (12/29) T-ALL, whilst RASSF10 was methylated in 16% (8/51) B-ALL and 88% (23/26) T-ALL. RASSF6 and RASSF10 expression inversely correlated with methylation which was restored by treatment with 5-aza-2'deoxycytidine (5azaDC).

Conclusion

This study shows the hypermethylation profile of RASSF genes in leukaemias is distinct from that of solid tumours and represents the first report of inactivation of RASSF6 or RASSF10 in cancer. These data show epigenetic inactivation of the candidate TSGs RASSF6 and RASSF10 is an extremely frequent event in the pathogenesis of childhood leukaemia. This study also warrants further investigation of the newly identified RASSF member RASSF10 and its potential role in leukaemia.  相似文献   

13.

Background

Columnar cell lesions (CCLs) are possible precursors of breast cancer, but little is known about the role of breast cancer-related genes in the progression of CCL to invasive breast cancer.

Methods

Gene copy numbers of 17 breast cancer-related genes were analyzed using Multiplex Ligation-dependent Probe Amplification (MLPA) in CCL (N?=?28), ductal carcinoma in situ (DCIS) grade I likely originating from CCL (N?=?5), and paired CCL (N?=?14/28) with DCIS (N?=?7) and/or invasive carcinoma (N?=?13). The genes included were BIRC5, C11orf30, CCND1, CCNE1, CDH1, CPD, EGFR, ERBB2, ESR1, FGFR1, IKBKB, MAPT, MED1, MTDH, MYC, TOP2A and TRAF4.

Results

No high level gene amplifications were observed in CCL, but copy number gains were encountered for the C11orf30 (3/28), MYC, CPD, MTDH (2/28), and CCND1, CCNE1, ESR1 and TOP2A genes (1/28). In addition, CDH1 showed loss in 2/28 and TOP2A in 1/28 cases. CCLs with or without atypia exhibited comparable numbers of copy number changes (p?=?0.312). Overall, the frequency of gene copy number changes increased from CCL towards DCIS and invasive carcinoma (p?=?0.004). Also in the cases with synchronous lesions, the CCLs exhibited fewer copy number changes than the DCIS/invasive carcinomas.

Conclusions

CCLs carry copy number changes of several known breast cancer-related genes, thereby substantiating their role in breast carcinogenesis. Among them, CCND1 and ESR1 copy number gains and CDH1 copy number losses are of particular interest. Since the copy number changes observed were more prevalent in DCIS and invasive carcinoma than in CCL, the corresponding gene alterations may represent rather late occurring events in low nuclear grade breast carcinogenesis.  相似文献   

14.
《Annals of oncology》2008,19(11):1870-1874
BackgroundPromoter methylation is a common epigenetic mechanism to silence tumor suppressor genes during breast cancer development. We investigated whether BRCA1-associated breast tumors show cancer-predictive methylation patterns similar to those found in sporadic tumors.Patients and methodsQuantitative multiplex methylation-specific PCR of 11 genes involved in breast carcinogenesis (RARB, RASSF1, TWIST1, CCND2, ESR1, SCGB3A1, BRCA1, BRCA2, CDKN2A, APC, CDH1) was carried out on 32 BRCA1-associated and 46 sporadic breast carcinomas and on normal breast tissue from seven BRCA1 mutation carriers and 13 non-carriers.ResultsThe extent of cumulative methylation increased with age (P < 0.001). The median cumulative methylation index (CMI) of all studied genes was significantly higher in tumors (89) than in normal tissue (13, P < 0.001). The median CMI was significantly lower in BRCA1-associated (59) than in sporadic breast tumors (122, P = 0.001), in estrogen receptor (ER)-negative tumors (73) than in ER-positive tumors (122, P = 0.005) and in lymph node-negative (77) compared with lymph node-positive tumors (137, P = 0.007). In subgroup analysis, the effect of a BRCA1 germline mutation on methylation proved to be independent of ER status, lymph node status and age.ConclusionsThese data indicate that BRCA1-associated breast cancers show less promoter methylation compared with sporadic breast carcinomas indicating a difference in disease etiology.  相似文献   

15.

Background

The brain is a common target of metastases for melanoma patients. Little is known about the genetic and epigenetic alterations in melanoma brain metastases (MBMs). Unraveling these molecular alterations is a key step in understanding their aggressive nature and identifying novel therapeutic targets.

Methods

Genome-wide DNA methylation analyses of MBMs (n = 15) and normal brain tissues (n = 91) and simultaneous multigene DNA methylation and gene deletion analyses of metastatic melanoma tissues (99 MBMs and 43 extracranial metastases) were performed. BRAF and NRAS mutations were evaluated in MBMs by targeted sequencing.

Results

MBMs showed significant epigenetic heterogeneity. RARB, RASSF1, ESR1, APC, PTEN, and CDH13 genes were frequently hypermethylated. Deletions were frequently detected in the CDKN2A/B locus. Of MBMs, 46.1% and 28.8% had BRAF and NRAS missense mutations, respectively. Compared with lung and liver metastases, MBMs exhibited higher frequency of CDH13 hypermethylation and CDKN2A/B locus deletion. Mutual exclusivity between hypermethylated genes and CDKN2A/B locus deletion identified 2 clinically relevant molecular subtypes of MBMs. CDKN2A/B deletions were associated with multiple MBMs and frequently hypermethylated genes with shorter time to brain metastasis.

Conclusions

Melanoma cells that colonize the brain harbor numerous genetically and epigenetically altered genes. This study presents an integrated genomic and epigenomic analysis that reveals MBM-specific molecular alterations and mutually exclusive molecular subtypes.  相似文献   

16.

Background

Although non muscle invasive bladder cancer (NMIBC) generally has a good long-term prognosis, up to 80% of patients will nevertheless experience local recurrence after the primary tumor resection. The search for markers capable of accurately identifying patients at high risk of recurrence is ongoing. We retrospectively evaluated the methylation status of a panel of 24 tumor suppressor genes (TIMP3, APC, CDKN2A, MLH1, ATM, RARB, CDKN2B, HIC1, CHFR, BRCA1, CASP8, CDKN1B, PTEN, BRCA2, CD44, RASSF1, DAPK1, FHIT, VHL, ESR1, TP73, IGSF4, GSTP1 and CDH13) in primary lesions to obtain information about their role in predicting local recurrence in NMIBC.

Methods

Formaldehyde-fixed paraffin-embedded (FFPE) samples from 74 patients operated on for bladder cancer were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA): 36 patients had relapsed and 38 were disease-free at the 5-year follow up. Methylation status was considered as a dichotomous variable and genes showing methylation ≥20% were defined as “positive”.

Results

Methylation frequencies were higher in non recurring than recurring tumors. A statistically significant difference was observed for HIC1 (P = 0.03), GSTP1 (P = 0.02) and RASSF1 (P = 0.03). The combination of the three genes showed 78% sensitivity and 66% specificity in identifying recurrent patients, with an overall accuracy of 72%.

Conclusions

Our preliminary data suggest a potential role of HIC1, GSTP1 and RASSF1 in predicting local recurrence in NMIBC. Such information could help clinicians to identify patients at high risk of recurrence who require close monitoring during follow up.  相似文献   

17.

Purpose

DNA promoter hypermethylation of tumor suppressor genes is known to occur early in cancer development, including breast cancer. To improve early breast cancer detection, we aimed to investigate whether the identification of DNA promoter hypermethylation might be of added value.

Methods

The methylation status of a panel of 19 candidate genes (AKR1B1, ALX1, ARHGEF7, FZD10, GHSR, GPX7, GREM1, GSTP1, HOXD1, KL, LHX2, MAL, MGMT, NDRG2, RASGRF2, SFRP1, SFRP2, TM6SF1 and TMEFF2) was determined in formalin-fixed paraffin-embedded normal breast and breast cancer tissue samples using gel-based methylation-specific PCR (MSP).

Results

The promoters of the AKR1B1, ALX1, GHSR, GREM1, RASGRF2, SFRP2, TM6SF1 and TMEFF2 genes were found to be significantly differentially methylated in normal versus malignant breast tissues. Based on sensitivity, specificity and logistic regression analyses the best performing genes for detecting breast cancer were identified. Through multivariate analyses, we found that AKR1B1 and TM6SF1 could detect breast cancer with an area under the curve (AUC) of 0.986 in a receiver operating characteristic (ROC) assessment.

Conclusions

Based on our data, we conclude that AKR1B1 and TM6SF1 may serve as candidate methylation biomarkers for early breast cancer detection. Further studies are underway to evaluate the methylation status of these genes in body fluids, including nipple aspirates and blood.  相似文献   

18.

Introduction

We have previously identified a rare subpopulation of variant human mammary epithelial cells (vHMEC) with repressed p16INK4A that exist in disease-free women yet display premalignant properties, suggesting that they have engaged the process of malignant transformation. In order to gain insight into the molecular alterations required for vHMEC to progress to malignancy, and to characterize the epigenetic events associated with early progression, we examined the effect of oncogenic stress on the behavior of these cells.

Methods

HMEC that express p16INK4A and vHMEC that do not, were transduced with constitutively active Ha-rasV12 and subsequently exposed to serum to determine whether signals from the cellular microenvironment could cooperate with ras to promote the malignant transformation of vHMEC. Epigenetic alterations were assessed using methylation-specific polymerase chain reaction (PCR).

Results

vHMEC expressing Ha-rasV12 (vHMEC-ras) bypassed the classic proliferative arrest that has been previously documented in normal fibroblasts following oncogenic stress, and that we also observe here in normal HMEC. Moreover, vHMEC-ras cells exhibited many additional alterations that are observed during progression to malignancy such as the generation of chromosomal abnormalities, upregulation of telomerase activity, immortalization following exposure to serum, and anchorage-independent growth, but they did not form tumors following orthotopic injection in vivo. Associated with their early progression to malignancy was an increase in the number of genes methylated, two of which (RASSF1A and SFRP1) were also methylated in other immortalized mammary cell lines as well as in breast cancer cells and tissues.

Conclusions

We have characterized a mammary progression model that recapitulates molecular and methylation alterations observed in many breast cancers. Our data suggest that concomitant methylation of RASSF1A and SFRP1 marks an early event in mammary transformation and may thus have prognostic potential.  相似文献   

19.

Background

Hundreds of hypermethylated genes have been described in breast cancer, yet the nature and contribution of these genes in their methylated state to overall risk and prognosis is under-characterized in non-sporadic breast cancers. We therefore compared associations of DNA methylation with tumor stage, hormone/growth receptor status and clinical outcomes in a familial breast cancer cohort. Because few previous methylation studies have considered the oncogenic or tumor suppressor properties of their gene sets, this functional status was included as part of our correlative analysis.

Results

We found methylation of oncogenes was associated with better prognostic indicators, whereas tumor suppressor gene methylation was associated with a more severe phenotype in women that were either HER2+ or lymph node positive at diagnosis, and/or tended to recur or develop distant metastases. For example, the methylation of the tumor suppressor gene APC was strongly associated with a specific subset of tumors that were both ER+ and HER2+, while methylation of the TWIST oncogene was associated with breast cancers that did not metastasize.

Methods

This was a retrospective, hospital-based study of n = 99 archival breast tumors derived from women with a germline genetic BRCA1 or BRCA2 mutation and/or familial breast cancer history. DNA methylation was quantified from formalin fixed, paraffin embedded tumors using the established protocol of quantitative multiplex-methylation specific PCR (QM-MSP). Non-parametric statistics were used to analyze candidate gene methylation in association with clinical outcomes.

Conclusion

We report several novel, positive associations between percent methylation of the APC, RASSF1A, TWIST, ERα, CDH1 and Cyclin D2 genes and key variables such as tumor stage, hormone and growth receptor status, and a history of recurrent or metastatic disease. Our data suggest the potential utility of parsing gene methylation by functional status and breast tumor subtype.Key words: DNA methylation, breast cancer, familial, BRCA1, BRCA2, epigenetic, protective, risk, QM-MSP, methylation specific PCR  相似文献   

20.

Introduction

Ductal carcinoma in situ (DCIS) is a non-invasive lesion of the breast that is frequently detected by mammography and subsequently removed by surgery. However, it is estimated that about half of the detected lesions would never have progressed into invasive cancer. Identifying DCIS and invasive cancer specific epigenetic lesions and understanding how these epigenetic changes are involved in triggering tumour progression is important for a better understanding of which lesions are at risk of becoming invasive.

Methods

Quantitative DNA methylation analysis of ABCB1, CDKN2A/p16INK4a, ESR1, FOXC1, GSTP1, IGF2, MGMT, MLH1, PPP2R2B, PTEN and RASSF1A was performed by pyrosequencing in a series of 27 pure DCIS, 28 small invasive ductal carcinomas (IDCs), 34 IDCs with a DCIS component and 5 normal breast tissue samples. FOXC1, ABCB1, PPP2R2B and PTEN were analyzed in 23 additional normal breast tissue samples. Real-Time PCR expression analysis was performed for FOXC1.

Results

Aberrant DNA methylation was observed in all three diagnosis groups for the following genes: ABCB1, FOXC1, GSTP1, MGMT, MLH1, PPP2R2B, PTEN and RASSF1A. For most of these genes, methylation was already present at the DCIS level with the same frequency as within IDCs. For FOXC1 significant differences in methylation levels were observed between normal breast tissue and invasive tumours (P < 0.001). The average DNA methylation levels were significantly higher in the pure IDCs and IDCs with DCIS compared to pure DCIS (P = 0.007 and P = 0.001, respectively). Real-time PCR analysis of FOXC1 expression from 25 DCIS, 23 IDCs and 28 normal tissue samples showed lower gene expression levels of FOXC1 in both methylated and unmethylated tumours compared to normal tissue (P < 0.001). DNA methylation levels of FOXC1, GSTP1, ABCB1 and RASSF1A were higher in oestrogen receptor (ER) positive vs. ER negative tumours; whereas methylation levels of FOXC1, ABCB1, PPP2R2B and PTEN were lower in tumours with a TP53 mutation.

Conclusions

Quantitative methylation analysis identified ABCB1, FOXC1, PPP2R2B and PTEN as novel genes to be methylated in DCIS. In particular, FOXC1 showed a significant increase in the methylation frequency in invasive tumours. Low FOXC1 gene expression in both methylated and unmethylated DCIS and IDCs indicates that the loss of its expression is an early event during breast cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号