首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of g-C3N4–Sb2S3/Sb4O5Cl2 (SCL-CX) composite photocatalysts were successfully prepared via a hydrothermal method. The as-prepared materials were characterized by TM3000, powder X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and UV–vis diffuse reflectance spectra (UV–vis DRS). The obtained photocatalyst showed higher photocatalytic activity than pure g-C3N4, Sb4O5Cl2 and Sb2S3/Sb4O5Cl2 (SCL). The optimum photocatalytic of the composite with the mass of 170 mg g-C3N4 and a degradation efficiency up to 95% for methyl orange (MO) under visible light was achieved within 60 min. The enhanced photocatalytic performance could be attributed to the stronger absorption in the visible region and the more efficient electron–hole separation.  相似文献   

2.
A series of g-C3N4/ZnAl2O4 composites were prepared using a conventional calcination method and the heterostructures were systematically characterized. It was found that the combination of g-C3N4 with ZnAl2O4 significantly improve their photocatalytic activities. The optimum photocatalyst of composite is at 5% (wt%) of ZnAl2O4, whose degradation efficiency for methyl orange (MO) was 96% within 120 min under visible-light irradiation. The formation of heterojunction between g-C3N4 and ZnAl2O4 can facilitate efficient charge separation of photogenerated electron-hole pairs, which were confirmed by electrochemical impedance spectroscopy (EIS). As a result, the photocatalytic properties of composites were enhanced.  相似文献   

3.
《Ceramics International》2016,42(3):4063-4071
The graphitic carbon nitride (g-C3N4) was rapidly synthesized via direct high-energy microwave heating approach. During the preparation process, only low-cost melamine and artificial graphite powders were used, without any metal catalysts or inert protective gas. The microstructure was investigated by using X-ray diffraction (XRD), Flourier transformed infrared (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The spectra of XRD and HRTEM indicated that the obtained g-C3N4 had a high crystallinity. The optical spectra covering Photoluminescence (PL) and Ultraviolet-visible (UV–vis) were also measured at room temperature. PL peak and UV–vis absorption edge of the g-C3N4 were shown at 455 nm and 469 nm, respectively, indicating visible-light photocatalytic property. Finally, the photocatalytic activity of g-C3N4 was investigated and evaluated as photocatalyst for the photo-degradation of Rhodamine B (RhB) and Methyl Orange (MO) in aqueous solution under visible-light (λ>420 nm) irradiation, respectively. Results indicated that the g-C3N4 sample displayed an excellent performance of removing of RhB and MO due to the improved crystallinity and large surface area of 126 m2/g. After the visible-light photocatalytic reaction for 40 min, the decolorization ratios of RhB and MO reached up to 100% and 94.2%, respectively.  相似文献   

4.
《Ceramics International》2016,42(3):4158-4170
The development of a graphitic carbon nitride (g-C3N4) photocatalyst is of great importance to a variety of visible utilization application fields. The desired high efficiency can be achieved by employing well-controlled g-C3N4 nanostructures. In this study, we successfully synthesized high surface area g-C3N4 nanowires and nanofibers using a cyanuric chloride and melamine precursor dispersed in a solvothermal reaction and with a subsequent calcination step. The obtained novel nanowire product had a diameter of 10–20 nm and a length of several hundreds of nanometers, while the nanofibers revealed fibrous nanostructures of randomly dispersed fibers with an average diameter of ~15 nm. The adsorption and photocatalytic experimental results indicated that the as-prepared nanowires and nanofibers showed enhanced activities compared with bulk g-C3N4. Based on our experimental results, a possible photocatalytic mechanism with hydroxyl and superoxide radical species as the main active species in photocatalysis was proposed. Moreover, our strategy may provide progress toward the design and practical application of 1D g-C3N4 nanostructures in the adsorption and photocatalytic degradation of pollutants.  相似文献   

5.
BiPO4/g-C3N4 with different amounts of BiPO4 was prepared through wet impregnation with calcination method. The BiPO4/g-C3N4 showed large surface area (172.9 m2 g 1) and the incorporation of BiPO4 caused a red-shift of g-C3N4 in visible light. The photocatalytic degradation of toluene over the samples was investigated. The degradation of toluene could get 82% in BiPO4/g-C3N4 photocatalysts under optimum reaction conditions. The BiPO4/g-C3N4 exhibited a higher photocatalytic activity than pure g-C3N4 or BiPO4. The improved photoactivity of BiPO4/g-C3N4 could be attributed to strong absorption in visible light and effective separation of photo-induced hole-electron pairs between BiPO4 and g-C3N4.  相似文献   

6.

The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and photoluminescence techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50 to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron–hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. Through the active material capture experiment, it is found that the main active material in the photocatalytic reaction process is holes, followed by superoxide radicals.

  相似文献   

7.
A novel TiO2  xNx/BN composite photocatalyst was prepared via a facile method using melamine–boron acid adducts (M·2B) and tetrabutyl titanate as reactants. The morphological results confirmed that nitrogen-doped TiO2 nanoparticles were uniformly coated on the surface of porous BN fibers. A red shift of absorption edge from 400 nm (pure TiO2) to 520 nm (TiO2  xNx/BN composites) was observed in their UV–Vis light absorption spectra. The TiO2  xNx/BN photocatalysts exhibited enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) and the highest photocatalytic degradation efficiency reached 97.8% under visible light irradiation for 40 min. The mechanism of enhanced photocatalytic activity was finally proposed.  相似文献   

8.
《Ceramics International》2017,43(16):13581-13591
The nanocomposites of WO3 nanoparticles and exfoliated graphitized C3N4 (g-C3N4) particles were prepared and their properties were studied. For this purpose, common methods used for characterization of solid samples were completed with dynamic light scattering (DLS) method and photocatalysis, which are suitable for study of aqueous dispersions.The WO3 nanoparticles of monoclinic structures were prepared by a hydrothermal method from sodium tungstate and g-C3N4 particles were prepared by calcination of melamine forming bulk g-C3N4, which was further thermally exfoliated. Its specific surface area (SSA) was 115 m2 g−1.The nanocomposites were prepared by mixing of WO3 nanoparticles and g-C3N4 structures in aqueous dispersions acidified by hydrochloric acid at pH = 2 followed by their separation and calcination at 450 °C. The real content of WO3 was determined at 19 wt%, 52 wt% and 63 wt%. It was found by the DLS analysis that the g-C3N4 particles were covered by the WO3 nanoparticles or their agglomerates creating the nanocomposites that were stable in aqueous dispersions even under intensive ultrasonic field. Using transmission electron microscopy (TEM) the average size of the pure WO3 nanoparticles and those in the nanocomposites was 73 nm and 72 nm, respectively.The formation of heterojunction between both components was investigated by UV–Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photocatalysis and photocurrent measurements. The photocatalytic decomposition of phenol under the LED source of 416 nm identified the formation of Z-scheme heterojunction, which was confirmed by the photocurrents measurements. The photocatalytic activity of the nanocomposites decreased with the increasing content of WO3, which was explained by shielding of the g-C3N4 surface by bigger WO3 agglomerates. This study also demonstrates a unique combination of various characterization techniques working in solid and liquid phase.  相似文献   

9.
《Ceramics International》2016,42(16):18116-18123
A series of onion-like carbon modified porous g-C3N4 (OLC/pg-C3N4) composites have been fabricated by a simple ultrasonic adsorption approach. The resultant OLC/pg-C3N4 composites exhibit excellent photocatalytic activity and stability towards the degradation of the dyes and phenol in aqueous solution under visible-light irradiation. The composite with 2.0 wt% OLC content shows the optimal photocatalytic activity for degrading rhodamine B (RhB), its rate constant is about three times that of pure pg-C3N4. The improved photocatalytic activity is mainly attributed to the synergetic effect of pg-C3N4 and OLC, including larger surface area, stronger visible light adsorption and efficient separation of photogenerated electrons and holes. Moreover, a possible mechanism of photocatalytic reaction over OLC/pg-C3N4 composite is proposed.  相似文献   

10.
Tin dioxide nanoparticles were prepared in the presence of graphitized carbon nitride (g-C3N4) forming nanocomposites with different contents of SnO2 up to 40 %. G-C3N4 was synthetized by heating of melamine at 550 °C in the open air and Sn2+ ions were precipitated by sodium hydroxide in g-C3N4 aqueous dispersions. Resulting mixtures were dried by freezing at ?20 °C and calcined at 450 °C to obtain SnO2/g-C3N4 nanocomposites.The nanocomposites were characterized by common characterization methods in solid state and in their aqueous dispersions using dynamic light scattering (DLS) analysis and photocatalysis. SnO2 nanoparticles in the nanocomposites were found to have an average size of 4 nm, however, those precipitated without g-C3N4 had an average size of 14 nm. Separation of photoinduced electron and holes via heterojunction between SnO2 and g-C3N4 was demonstrated by photocatalytic decomposition of Rhodamine B (RhB) under LED visible irradiation (416 nm) and photocurrent measurements. The most photocatalytically active nanocomposite contained 10 % of SnO2. Graphitized carbon nitride was assumed to serve as a template structure for the preparation of SnO2 nanoparticles with a narrow size distribution without using any stabilizing additives.  相似文献   

11.
Molybdenum doped graphitic carbon nitride (g-C3N4) catalysts were prepared by a simple pyrolysis method using melamine and ammonium molybdate as precursors. The characterization results indicated that the obtained Mo-doped g-C3N4 catalysts had worm-like mesostructures with higher surface area. Introduction of Mo species can effectively extend the spectral response property and reduce the recombination rate of photogenerated electrons and holes. CO2 photocatalytic reduction tests showed that the Mo-doped g-C3N4 catalysts exhibited considerably higher activity (the highest CO and CH4 yields of 887 and 123 μmol g 1-cat., respectively, after 8 h of UV irradiation.) compared with pure g-C3N4 from melamine.  相似文献   

12.
《Ceramics International》2020,46(13):20974-20984
Photocatalytic technology is an environmentally safe method of eliminating organic pollutants and antibiotics in wastewater. In this research, the performance of Fe3O4/CdS/g-C3N4 (FCN) photocatalyst for degradation of antibiotics was studied. The composite photocatalysts with different concentrations of g-C3N4 were prepared. FCN has better photocatalytic activity than degradation dyes in removal of antibiotics under visible light. This indicates that FCN could effectively hinder the recombination of carriers, and the addition of g-C3N4 increases the optical response range of CdS. At the same time, the introduction of Fe3O4 magnetic nanoparticles overcomes the problem of difficulty in recovery of the powder photocatalyst. The photocatalytic activity is not reduced to any significant after three cycles of use.  相似文献   

13.
《Ceramics International》2017,43(10):7901-7907
g-C3N4 as a new metal-free photocatalytic material for water splitting has attracted much attention in recent years, but its photocatalytic efficiency needs further improvement. Here we synthesized novel C60/graphene/g-C3N4 composite photocatalytic materials with high hydrogen generation ability for water splitting under visible light radiation (λ>420 nm). These materials take full advantage of the electron conduction expressing of graphene and the superior-strong electron-attracting ability of C60. The mutually-reinforcing synergy between graphene and C60 improves the migration and utilization efficiency of photo-generated electrons and accelerates the separation of photo-generated charges, thus significantly enhancing the hydrogen generation capacity of g-C3N4. The hydrogen production amount and rate of C60/graphene/g-C3N4 (10 mg/L C60 and graphene) after 10 h are 5449.5 µmol/g and 545 µmol/g/h, which is 539.6 times of pure g-C3N4 under the same condition. The values are 50.8 and 4.24 times of graphene/g-C3N4 (10 mg/L graphene) and C60/g-C3N4 (10 mg/L C60), respectively. The apparent quantum yield of C60/graphene/g-C3N4 (10 mg/L C60 and graphene) in 97 h is about 7.2%. The improvement of hydrogen generation activity in 97 h suggests the high long-time stability of C60/graphene/g-C3N4 in photocatalytic water spitting. The photocatalytic ability of C60/graphene/g-C3N4 can be controlled by regulating the addition of graphene and C60. The mutually-reinforcing synergy between graphene and C60 was proved by X-ray photoelectron spectroscopy, photoluminescence spectrum and organic electron acceptors of MV2+. Thus, the joint action of C60 and graphene promotes the migration, separation and utilization of photo-generated electrons, which is responsible for the significant enhancement of photocatalytic performance.  相似文献   

14.
《Ceramics International》2020,46(13):21431-21438
The solar light sensitive g-C3N4/TiO2 heterojunction photocatalysts containing 20, 50, 80, and 90 wt% graphitic carbon nitride (g-C3N4) were prepared by growing Titania (TiO2) nanoparticles on the surfaces of g-C3N4 particles via one step hydrothermal process. The hydrothermal reactions were allowed to take place at 110 °C at autogenous pressure for 1 h. Raman spectroscopy analyses confirmed that an interface developed between the surfaces of TiO2 and g-C3N4 nanoparticles. The photocatalyst containing 80 wt% g-C3N4 was subsequently heat treated 1 h at temperatures between 350 and 500 °C to improve the photocatalytic efficiency. Structural and optical properties of the prepared g-C3N4/TiO2 heterojunction nanocomposites were compared with those of the pristine TiO2 and pristine g-C3N4 powders. Photocatalytic activity of all the nanocomposites and the pristine TiO2 and g-C3N4 powders were assessed by the Methylene Blue (MB) degradation test under solar light illumination. g-C3N4/TiO2 heterojunction photocatalysts exhibited better photocatalytic activity for the degradation of MB than both pristine TiO2 and g-C3N4. The photocatalytic efficiency of the g-C3N4/TiO2 heterojunction photocatalyst heat treated at 400 °C for 1 h is 1.45 times better than that of the pristine TiO2 powder, 2.20 times better than that of the pristine g-C3N4 powder, and 1.24 times better than that of the commercially available TiO2 powder (Degussa P25). The improvement in photocatalytic efficiency was related to i) the generation of reactive oxidation species induced by photogenerated electrons, ii) the reduced recombination rate for electron-hole pairs, and iii) large specific surface area.  相似文献   

15.
《Ceramics International》2022,48(15):21898-21905
Recently, there has been a significant interest in developing high-performance photocatalysts for removing organic pollutants from water environment. Herein, a ternary graphitic C3N4 (g-C3N4)/Ag3PO4/AgBr composite photocatalyst is synthesized using an in-situ precipitation-anion-exchange process and characterized by several spectroscopic and microscopic techniques. During the photocatalytic reaction, X-ray photoelectron spectroscopy clearly illustrated the formation of metallic Ag on the g-C3N4/Ag3PO4/AgBr composite surface. The ternary composite photocatalyst demonstrated an increased photoactivity under visible light (>420 nm), achieving a complete decolorization of methyl orange (MO) in 5 min. The ternary g-C3N4/Ag3PO4/AgBr hybrid was also applied to the 2-chlorophenol degradation under visible light, further confirming its excellent photocatalytic activity. In addition, quenching experiments revealed that holes (h+) and O2?– were the major attack species in the decolorization of MO. The enhanced photoactivity of g-C3N4/Ag3PO4/AgBr results from the efficient transfer/separation of photoinduced charges with the dual Z-scheme pathway and the charge recombination sites on the formed Ag particles.  相似文献   

16.
《Ceramics International》2016,42(16):18443-18452
Highly efficient visible-light-driven heterojunction photocatalysts, spindle-shaped nanoporous TiO2 coupled with graphitic g-C3N4 nanosheets have been synthesized by a facile one-step solvothermal method. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis and UV–vis diffuse reflectance spectrometry (DRS), proving a successful modification of TiO2 with g-C3N4. The results showed spindle-shaped nanoporous TiO2 microspheres with a uniform diameter of about 200 nm dispersed uniformly on the surface of graphitic g-C3N4 nanosheets. The g-C3N4/TiO2 hybrid materials exhibited higher photocatalytic activity than either pure g-C3N4 or nanoporous TiO2 towards degradation of typical rhodamine B (RhB), methyl blue (MB) and methyl orange (MO) dyes under visible light (>420 nm), which can be largely ascribed to the increased light absorption, larger BET surface area and higher efficient separation of photogenerated electron–hole pairs due to the formation of heterostructure. In addition, the possible transferred and separated behavior of electron–hole pairs and photocatalytic mechanisms on basis of the experimental results are also proposed in detail.  相似文献   

17.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

18.
《Ceramics International》2020,46(14):22171-22180
An effective g-C3N4/Fe@ZnO heterostructured photocatalyst was synthesized by a simple chemical co-precipitation method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. Transmission electron microscopy revealed that 7-8 nm-sized 1%Fe@ZnO nanoparticles were evenly distributed on g-C3N4 nanosheets to form a hybrid composite. The photocatalytic effectiveness of the composites was assessed against methylene blue dye, and it was found that the 50%g-C3N4/Fe@ZnO photocatalyst was more efficient in harvesting solar energy to degrade dye than the ZnO, 1%Fe@ZnO, g-C3N4, g-C3N4/ZnO and (10, 25, 40, 60 & 75 wt%) g-C3N4/Fe@ZnO samples. The antibacterial competency of the samples was also explored against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Streptococcus salivarius) and Gram-negative (Escherichia coli) bacteria through the well diffusion method. The 50%g-C3N4/Fe@ZnO nanocomposite exhibited a superior antibacterial action compared to that of the rest of the samples. The exceptionally improved photocatalytic and antimicrobial efficiency of the 50%g-C3N4/Fe@ZnO composite was primarily accredited to the synergic outcome of the interface established between Fe@ZnO nanoparticles and g-C3N4 nanosheets.  相似文献   

19.
TiO2/MoS2 composite was encapsulated by hydrophobic SiO2 nanoparticles using a sol–gel hydrothermal method with methyltriethoxysilane (MTES), titanium tetrachloride (TiCl4), and molybdenum disulfide (MoS2) as raw materials. Then, a novel dual functional composite film with hydrophobicity and photocatalytic activity was fabricated on a glass substrates via the combination of polydimethylsiloxane adhesives and hydrophobic SiO2@(TiO2/MoS2) composite particles. The influence of the mole ratios of MTES to TiO2/MoS2 (M:T) on the wettability and photocatalytic activity of the composite film was discussed. The surface morphology, chemical compositions, and hydrophobicity of the composite film on the glass substrate were investigated by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle (water CA) measurements. The results indicated that the composite film exhibited stable superhydrophobicity and excellent photocatalytic activity for degradation of methyl orange (MO) even after five continuous cycles of photocatalytic reaction when M/T was 7:1. The water CA and degradation efficiency for MO remained at 154° and 94%, respectively. Further, the composite film showed a good non-sticking characteristic with the water sliding angle (SA) at about 4°. The SiO2@(TiO2/MoS2) composite consisting of hydrophobic SiO2 nanoparticles and TiO2/MoS2 heterostructure could provide synergistic effects for maintaining long-term self-cleaning performance.  相似文献   

20.
This work presents a novel composite photocatalyst, AgCl/Bi3O4Cl, which was prepared using an ion-exchange method. The synthesized composite was characterized by various techniques and its photocatalytic activity was investigated in RhB degradation under visible light irradiation. Results indicated that the introduction of AgCl into Bi3O4Cl promoted the specific surface area, light absorption performance and the separation efficiency of electron–hole pairs, which resulted in a high photocatalytic activity of the composite. The optimal AgCl/Bi3O4Cl sample showed a RhB degradation rate of 0.048 min 1, which was 2.2 and 2.4 times higher than those of AgCl and Bi3O4Cl, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号