首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

2.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

3.
U–Pb dating of detrital zircons was performed on mélange-hosted lithic and basaltic sandstones from the Inthanon Zone in northern Thailand to determine the timing of accretion and arc activity associated with Paleo-Tethys subduction. The detrital zircons have peak ages at 3400–3200, 2600–2400, 1000–700, 600–400, and 300–250 Ma, similar to the peaks ages of detrital zircons associated with other circum-Paleo-Tethys subduction zones. We identified two types of sandstone in the study area based on the youngest detrital zircon ages: Type 1 sandstones have Late Carboniferous youngest zircon U–Pb ages of 308 ± 14 and 300 ± 16 Ma, older than associated radiolarian chert blocks within the same outcrop. In contrast, Type 2 sandstones have youngest zircon U–Pb ages of 238 ± 10 and 236 ± 15 Ma, suggesting a Middle Triassic maximum depositional age. The youngest detrital zircons in Type 1 sandstones were derived from a Late Carboniferous–Early Permian ‘missing’ arc, suggesting that the Sukhothai Arc was active during sedimentation. The data presented within this study provide information on the development of the Sukhothai Arc, and further suggest that subduction of the Paleo-Tethyan oceanic plate beneath the Indochina Block had already commenced by the Late Carboniferous. Significant Middle Triassic arc magmatism, following the Late Carboniferous–Early Permian arc activity, is inferred from the presence of conspicuous detrital zircon U–Pb age peaks in Type 2 sandstones and the igneous rock record of the Sukhothai Arc. In contrast, only minimal arc activity occurred during the Middle Permian–earliest Triassic. Type 1 sandstones were deposited between the Late Permian and the earliest Triassic, after the deposition of associated Middle–Late Permian cherts that occur in the same mélanges and during a hiatus in Sukhothai Arc magmatism. In contrast, Type 2 sandstones were deposited during the Middle Triassic, coincident with the timing of maximum magmatism in the Sukhothai Arc, as evidenced by the presence of abundant Middle Triassic detrital zircons. These two types of sandstone were probably derived from discrete accretionary units in an original accretionary prism that was located along the western margin of the Sukhothai Arc.  相似文献   

4.
In the Menderes Massif (western Taurides) a Neoproterozoic basement comprising metasediments and intrusive granites is imbricated between Paleozoic platform sediments. U–Pb–Hf zircon analyses of Menderes rock units were performed by us using LA-ICP-MS. The U–Pb detrital zircon signal of the Neoproterozoic metasediments is largely consistent with a NE African (Gondwana) provenance. The oldest unit, a paragneiss, contains significant amounts (~ 30%) of Archean-aged zircons and εHf (t) values of about a half of its Neoproterozoic zircons are negative suggesting contribution from Pan-African terranes dominated by reworking of an old crust. In the overlying, mineralogically-immature Core schist (which is still Neoproterozoic), the majority of the detrital zircons are Neoproterozoic, portraying positive εHf (t) values indicating derivation from a proximal juvenile source, resembling the Arabian–Nubian Shield.The period of sedimentation of the analyzed metasediments, is constrained between 570 and 550 Ma (Late Ediacaran). The Core schist sediments, ~ 9 km thick, accumulated in less than 20 My implying a tectonic-controlled sedimentary basin evolved adjacent to the eroded juvenile terrane. Granites, now orthogneisses, intruded the basin fill at 550 Ma, they exhibit ± 0 εHf (t = 550 Ma) and TDM ages of 1.4 Ga consistent with anatexis of various admixtures of juvenile Neoproterozoic and Late Archean detrital components. Granites in the northern Arabian–Nubian Shield are no younger than 580 Ma and their εHf (t) are usually more positive. This implies that the Menderes does not represent a straightforward continuation of the Arabian–Nubian Shield.The lower part of the pre-Carboniferous silisiclastic cover of the Menderes basement, comprises a yellowish quartzite whose U–Pb–Hf detrital zircon signal resembles that of far-traveled Ordovician sandstones in Jordan (including 0.9–1.1 Ga detrital zircons), supporting pre-Triassic paleorestorations placing the Tauride with Afro-Arabia. The detrital signal of the overlying carbonate-bearing quartzitic sequence indicates contribution from a different source: the majority of its detrital zircons yielded 550 Ma and ± 0 εHf (t = 550 Ma) values identical to that of the underlying granitic gneiss implying exposure of Menderes-like granites in the provenance.260–250 Ma lead-loss and partial resetting of the U–Pb system of certain zircons in both basement and cover units was detected. It is interpreted as a consequence of a Permian–Early Triassic thermal event preceding known Triassic granitoid intrusions.  相似文献   

5.
U–Pb detrital zircon studies in the Rio Fuerte Group, NW Mexico, establish its depositional tectonic setting and its exotic nature in relation to the North American craton. Two metasedimentary samples of the Rio Fuerte Formation yield major age clusters at 453–508 Ma, 547–579 Ma, 726–606 Ma, and sparse quantities of older zircons. The cumulative age plots are quite different from those arising from lower Paleozoic miogeoclinal rocks of southwestern North America and of Cordilleran Paleozoic exotic terranes such as Golconda and Robert Mountains. The relative age-probability plots are similar to some reported from the Mixteco terrane in southern Mexico and from some lower Paleozoic Gondwanan sequences, but they differ from those in the Gondwanan-affinity Oaxaca terrane. Major zircon age clusters indicate deposition in an intraoceanic basin located between a Late Ordovician magmatic arc and either a peri-Gondwanan terrane or northern Gondwanaland. The U–Pb magmatic ages of 151 ± 3 Ma from a granitic pluton and 155 ± 4 Ma from a granitic sill permit a revision of the stratigraphic and tectonic evolution of the Rio Fuerte Group. A regional metamorphism event predating the Late Jurassic magmatism is preliminarily ascribed to the Late Permian amalgamation of Laurentia and Gondwana. The Late Jurassic magmatism, deformation, and regional metamorphism are related to the Nevadan Orogeny.  相似文献   

6.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

7.
The Permian Solonker–Xar Moron River Suture in South Mongolia and Inner Mongolia of China represents a major tectonic boundary in Asia. The position of its eastward continuation in northeastern China has been debated for many years. In order to resolve this debate, we measured detrital zircons of the Cisuralian (Early Permian) plant fossil-bearing Hesheng Formation in the Yanbian area, Jilin Province. The detrital zircons have ages of ca. 2541–2535 Ma, 1897–1832 Ma, 458–452 Ma, and 390–280 Ma. We therefore conclude that the depositional age of the Hesheng Formation is younger than ca. 280 Ma; this is consistent with paleontologic data that indicates an Artinskian–Early Kungurian age. The presence of Neoarchean and Paleoproterozoic zircons suggests that the Hesheng Formation may have a North-China affinity; the absence of Neoproterozoic and Pan-African zircons preclude detrital sources from the Jiamusi–Mongolia Block during the Cisuralian. This, combined with the Permian floristic and stratigraphic data, provides a clue that the Solonker–Xar Moron River Suture likely extends to the Wangqing–Hunchun region, in eastern Jilin Province.  相似文献   

8.
Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hf-isotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A meta-felsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 ± 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200–1060 Ma), younger Grenvillian (~ 960 Ma) and Pan-African (650–500 Ma), with εHf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an “Asian Hun superterrane” (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440–420 Ma when this “Asian Hun superterrane” collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.  相似文献   

9.
Detrital zircons from the upper Cambrian-Devonian sandstones (Crashsite Group; n = 485) and Carboniferous tillite (Whiteout Conglomerate; n = 81) of the Ellsworth Mountains, Antarctica record a steady supply of Neoproterozoic (“Pan-African”) orogeny (~ 550–600 Ma), Grenville (~ 1000 Ma) and Neoarchean (~ 3000–3500 Ma) zircons into the northern marginal basin of Gondwana. The overlying Permian Glossopteris-bearing Polarstar Formation shales (n = 85) have the same zircon provenance as underlying units but also include a dominance of depositional-age (263 Ma) euhedral zircons which are interpreted to be of local, volcanic arc origin. Modeling of detrital zircon provenance suggests that source areas were present in Pan-African and Laurentian crust throughout the Paleozoic. We also report calcite twinning strain results (12 strain analyses; n = 398 twins) for the Cambrian Minaret Fm. in the Heritage range which is predominantly a layer-parallel shortening strain in the direction (WSW-ENE) of Permian Gondwanide orogen thrust transport. There is a secondary, sub-vertical twinning strain overprint. The initiation of localized lower-middle Cambrian rifting (Heritage Group deposition) in Grenville-aged crust as Gondwana amalgamated and the subsequent Jurassic counterclockwise rotation of the Ellsworth-Whitmore terrane out of the Permian Gondwanide belt into central Antarctica each remain tectonic curiosities.  相似文献   

10.
《Gondwana Research》2014,25(1):383-400
U–Pb geochronologic and Hf isotopic results of seven sandstones collected from Late Carboniferous through Early Triassic strata of the south-central part of the North China Craton record a dramatic provenance shift near the end of the Late Carboniferous. Detrital zircons from the Late Carboniferous sandstones are dominated by the Early Paleozoic components with positive εHf(t) values, implying the existence of a significant volume of juvenile crust at this age in the source regions. Moreover, there are also three minor peaks at ca. 2.5 Ga, 1.87 Ga and 1.1–0.9 Ga. Based on our new data, in conjunction with existing zircon ages and Hf isotopic data in the North China Craton (NCC), Central China Orogenic Belt (CCOB) and Central Asian Orogenic Belt (CAOB), it can be concluded that Early Paleozoic and Neoproterozoic detritus in the south-central NCC were derived from the CCOB. Zircons with ages of 1.9–1.7 Ga were derived from the NCC. However, the oldest components can't be distinguished, possibly from either the NCC or the CCOB, or both. In contrast, detrital zircons from the Permian and Triassic sandstones are characterized by three major groups of U–Pb ages (2.6–2.4 Ga, 1.9–1.7 Ga and Late Paleozoic ages). Specially, most of the Late Paleozoic zircons show negative εHf(t) values, similar to the igneous zircons from intrusive rocks of the Inner Mongolia Paleo-Uplift (IMPU), indicating that the Late Paleozoic detritus were derived from the northern part of the NCC. This provenance shift could be approximately constrained at the end of the Late Carboniferous and probably hints that tectonic uplift firstly occurred between the CCOB and the NCC as a result of the collision between the South and North Qinling microcontinental terranes, and then switched to the domain between the CAOB and the NCC. Additionally, on the basis of Lu–Hf isotopic data, we reveal the pre-Triassic crustal growth history for the NCC. In comparison among the three crustal growth curves obtained from modern river sands, our samples, and the Proterozoic sedimentary rocks, we realize that old components are apparently underestimated by zircons from the younger sedimentary rocks and modern river sands. Hence, cautions should be taken when using this method to investigate growth history of continental crust.  相似文献   

11.
We present detrital zircon UPb SHRIMP age patterns for the central segment (34–42°S) of an extensive accretionary complex along coastal Chile together with ages for some relevant igneous rocks. The complex consists of a basally accreted high pressure/low temperature Western Series outboard of a frontally accreted Eastern Series that was overprinted by high temperature/low pressure metamorphism. Eleven new SHRIMP detrital zircon age patterns have been obtained for meta-turbidites from the central (34–42°S) segment of the accretionary complex, four from previously undated metamorphic complexes and associated intrusive rocks from the main Andean cordillera, and three from igneous rocks in Argentina that were considered as possible sediment source areas. There are no Mesozoic detrital zircons in the accretionary rocks. Early Paleozoic zircons are an essential component of the provenance, and Grenville-age zircons and isolated grains as old as 3 Ga occur in most rocks, although much less commonly in the Western Series of the southern sector. In the northernmost sector (34–38°30′S) Proterozoic zircon grains constitute more than 50% of the detrital spectra, in contrast with less than 10% in the southern sector (39–42°S). The youngest igneous detrital zircons in both the northern Western (307 Ma) and Eastern Series (345 Ma) are considered to closely date sedimentation of the protoliths. Both oxygen and LuHf isotopic analyses of a selection of Permian to Neoproterozoic detrital zircon grains indicate that the respective igneous source rocks had significant crustal contributions. The results suggest that Early Paleozoic orogenic belts (Pampean and Famatinian) containing material recycled from cratonic areas of South America supplied detritus to this part of the paleo-Pacific coast. In contrast, in the southern exposures of the Western Series studied here, Permian detrital zircons (253–295 Ma) dominate, indicating much younger deposition. The northern sector has scarce Early to Middle Devonian detrital zircons, prominent south of 39°S. The sedimentary protolith of the northern sector was probably deposited in a passive margin setting starved of Devonian (Achalian) detritus by a topographic barrier formed by the Precordillera, and possibly Chilenia, terranes. Devonian subduction-related metamorphic and plutonic rocks developed south of 39°S, beyond the possible southern limit of Chilenia, where sedimentation of accretionary rocks continued until Permian times.  相似文献   

12.
We present a synopsis of detrital zircon U–Pb ages of sandstones from North Africa and neighboring Israel and Jordan, which allows us to identify zones with characteristic sediment provenance along the northern Gondwana margin (in present-day coordinates) in Cambrian–Ordovician times, and helps us to unravel the peri-Gondwana jigsaw puzzle. A special feature of the early Paleozoic cover sequence of North Africa is the eastward increase of 1.1–0.95 Ga detrital zircons, which become ubiquitous in the early Paleozoic sandstones of the Saharan Metacraton. Detrital zircons aged about 2.7–2.5, 2.15–1.75 and 0.75–0.53 Ga are also present. Early Paleozoic sandstones with similar provenance are known from peri-Gondwana terranes in the Eastern and Western Mediterranean and from NW Iberia. These terranes need not be transported from western Gondwana (Amazonia) as suggested previously. They were likely located to the north of the Saharan Metacraton during the early Paleozoic before they rifted off from Gondwana. Furthermore, we recognize an increase, as stratigraphic ages get younger, of ca. 1.0 Ga detrital zircons at some point between the Late Cambrian and late Middle Ordovician. We speculate that this might be linked to far-field tectonics and regional uplift in central Gondwana related to plate-tectonic reorganization along the Gondwana margin, leading to erosion of ca. 1.0 Ga basement and country rocks of the Transgondwanan supermountain and fluvial dispersal of detritus toward the Gondwana margin.  相似文献   

13.
《Gondwana Research》2014,26(4):1627-1643
The Tianshan Orogenic Belt, which is located in the southwestern part of the Central Asian Orogenic Belt (CAOB), is an important component in the reconstruction of the tectonic evolution of the CAOB. In order to examine the evolution of the Tianshan Orogenic Belt, we performed detrital zircon U–Pb dating analyses of sediments from the accretionary mélange from Chinese southwestern Tianshan in this study. A total of 542 analyzed spots on 541 zircon grains from five samples yield Paleoarchean to Devonian ages. The major age groups are 2520–2400 Ma, 1890–1600 Ma, 1168–651 Ma, and 490–390 Ma. Provenance analysis indicates that, the Precambrian detrital zircons were probably mainly derived from the paleo-Kazakhstan continent formed before the Early Silurian by amalgamation of the Kazakhstan–Yili microplate, the Chinese central Tianshan terrane and the Kyrgyz North and Middle Tianshan blocks, while detrital zircons with Paleozoic ages mainly from igneous rocks of the continental arc generated by the northward subduction of the south Tianshan paleocean. The age data correspond to four tectono-thermal events that took place in these small blocks, i.e., the continental nucleus growth during the Late Neoarchean–early Paleoproterozoic (~ 2.5 Ga), the evolution of the supercontinents Columbia (2.1–1.6 Ga) and Rodinia (1.3–0.57 Ga), and the arc magmatism related with the Phanerozoic orogeny. The Precambrian zircons show a similar age pattern as the Tarim and the Cathaysia cratons and the Eastern India–Eastern Antarctica block but differ from those of Siberia distinctly. Therefore, the Tianshan region blocks and the Kazakhstan–Yili microplate have a close affinity to the eastern paleo-Gondwana fragments, but were not derived from the Siberia craton as proposed by some previous researchers. These blocks were likely generated by rifting accompanying Rodinia break-up in late Precambrian times.The youngest ages of the detrital zircons from the subduction mélange show a maximum depositional age of ca. 390 Ma. It is coeval with the end of an earlier arc magmatic pulse (440–390 Ma) but a bit older than a younger one at 360–320 Ma and nearly 70–80 Ma older than the HP–UHP metamorphism in the subduction zone (320–310 Ma).  相似文献   

14.
The provenance of the large and super-large scale bauxite deposits developed in the Wuchuan–Zheng’an–Daozhen (WZD) alumina metallogenic province in the Yangtze Block of South China is poorly understood. LA-ICP-MS and SIMS U–Pb dating of detrital zircons from bauxite ores and the underlying Hanjiadian Group in the WZD area provide new constrains on the provenance of the WZD bauxite and provide new insight on the bauxite ore-forming process. The ages of the detrital zircons in the bauxites and the zircons in the Hanjiadian Group are similar suggesting that the bauxites are genetically related to the Hanjiadian sediments. The detrital zircon populations of the four samples studied show four primary age peaks: 2600–2400 Ma, 1900–1700 Ma, 1300–700 Ma and 700–400 Ma. The age distribution of detrital zircons indicates that they are probably derived from various sources including Neoproterozoic, Mesoproterozoic, Paleoproterozoic, Archean and some minor Paleozoic sources. The most abundant age population contains a continuous range of ages from 1300 to 700 Ma, ages consistent with subduction-related magmatic activities (1000–740 Ma) along the western margin of the Yangtze Block and the worldwide Grenville orogenic events (1300–1000 Ma). Thus, it is suggested that the main provenances of the WZD bauxite and the Hanjiadian Group are the Neoproterozoic igneous rocks in the western Yangtze Block and the Grenville-age igneous rocks in the southern Cathaysia Block. In addition, this work verifies that the global Grenville orogenic events and subduction-related magmatic activities associated with the Yangtze Block had a significant influence on the formation of the WZD bauxite deposits.  相似文献   

15.
This paper reports LA–ICP–MS U–Pb dates and in situ Hf isotope analyses of detrital zircons from the Mesozoic basins in western Shandong, China, with the aim to constrain the depositional ages and provenances of the Mesozoic strata as well as the Mesozoic tectonic evolution of the eastern North China Block (NCB). The Mesozoic strata in western Shandong, from bottom to top, include the Fenghuangshan, Fangzi, Santai and Wennan formations. Most of the analyzed zircon grains exhibit oscillatory growth zoning and have relatively high Th/U ratios (generally 0.2–3.4), suggesting a magmatic origin. Zircons from the Fenghuangshan Formation in the Zhoucun Basin yield six main age populations (2489, 1854, 331, 305, 282, and 247 Ma). Zircons from the Fangzi Formation in the Zhoucun and Mengyin basins yield eight main age populations (2494, 1844, 927, 465, 323, 273, 223, and 159 Ma) and ten main age populations (2498, 1847, 932, 808, 540, 431, 315, 282, 227, and 175 Ma), respectively, whereas zircons from the Santai Formation in the Zhoucun and Mengyin basins yield nine main age populations (2519, 1845, 433, 325, 271, 237, 192, 161, and 146 Ma) and six main age populations (2464, 1845, 853, 277, 191, and 150 Ma), respectively. Five main age populations (2558, 1330, 609, 181, and 136 Ma) are detected for zircons from the Wennan Formation in the Pingyi Basin. Based on the youngest age, together with the contact relationships among formations, we propose that the Fenghuangshan Formation formed in the Early–Middle Triassic, the Fangzi Formation in the Middle–Late Jurassic, the Santai Formation after the Late Jurassic, and the Wennan Formation after the Early Cretaceous. These results, together with previously published data, indicate that: (1) the sediments of the Fenghuangshan Formation were sourced from the Precambrian basement and from late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB; (2) the sediments of the Fangzi and Santai formations were sourced from the Precambrian basement, late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB, and the Sulu terrane, as well as from Middle–Late Jurassic igneous rocks in the southeastern part of the NCB; and (3) the Wennan Formation was sourced from the Tongshi intrusive complex, the Sulu terrane, and minor Precambrian basement and Early Cretaceous igneous rocks. The evolution of detrital provenance indicates that in the Early–Middle Triassic, the northern part of the NCB was higher than its interior; during the Late Triassic to Early Jurassic, the eastern NCB was uplifted, resulting in a period of non-deposition; and an important transition from a compressional to an extensional tectonic regime occurred during the Middle–Late Jurassic. The presence of Neoproterozoic and Triassic detrital zircons in the Fangzi Formation sourced from the Sulu terrane suggests that large-scale sinistral strike-slip movement along the Tan-Lu Fault Zone did not occur after the Middle Jurassic (ca. 175 Ma).  相似文献   

16.
The southwestern margin of the North China Craton (NCC) is located between the Alxa Terrane to the northwest, the North Qilian Orogen to the west and the North Qinling Orogen to the south. However, the paleogeographic and tectonic evolution for the southwestern part of the NCC in the Late Paleozoic is still poorly constrained. In order to constrain the Late Paleozoic tectonic evolution of the southwestern NCC, we carried out detailed field work and detrital zircon U-Pb geochronological research on Middle–Late Permian sedimentary rocks at the southwestern margin of the NCC. The U-Pb age spectra of detrital zircons from six samples are similar, showing four populations of 2.6–2.4 Ga, 2.0–1.7 Ga, 500–360 Ma and 350–250 Ma. Moreover, on the basis of the weighted-mean age of the youngest detrital zircons (257 ± 4 Ma), combined with the published results and volcanic interlayers, we propose that the Shangshihezi Formation formed during the Middle–Late Permian. Our results and published data indicate that the detrital zircons with age groups of 2.6–2.4 Ga and 2.0–1.7 Ga were likely derived from the Khondalite Belt and Yinshan Block in the northwestern NCC. The junction part between the North Qinling and North Qilian Orogen may provide the 500–360 Ma detrital zircons for the study area. The 350–250 Ma detrital zircons were probably derived from the northwestern part of the NCC. The majority of materials from Shangshihezi Formation within the study area were derived from the northwestern part of the NCC, indicating that the northwestern part of the NCC was strongly uplifted possibly resulting from the progressive subduction and closure of the Paleo-Asian Ocean. A small amount of materials were sourced from southwestern part of the NCC, indicating that the North Qinling Orogen experienced a minor uplift resulting from the northward subduction of the South Qinling terrane.  相似文献   

17.
The Sanbagawa Metamorphic Belt in Japan is one of the best studied high-pressure, low temperature metamorphic belts. Recent work applying new dating techniques has challenged the previously accepted temporal framework for the evolution of the belt, as it was shown that large parts of the belt contain detrital zircons of Late Cretaceous age (younger than 100 Ma), i.e. they have protolith ages younger than the previously accepted age of metamorphism at ca. 110 Ma. A 2000 m bore hole from north-western Shikoku provided an excellent opportunity to further evaluate the areal extent of Late Cretaceous protoliths as the drill hole was drilled in an area considered to be part of the Jurassic to Early Cretaceous part of the Sanbagawa Belt. Dating of single zircon grains using the LA–ICP–MS U–Pb dating method shows that all but one sample contain zircons younger than 100 Ma and thus the protoliths are younger than the previously accepted age of metamorphism of the Sanbagawa Belt. The single sample that contains only zircons dated at 136 ± 3 Ma, apparently is of volcanic origin and could be a clast representing the source of 130–140 Ma zircons of the sample taken about 120 above this sample. In addition, three surface samples were analysed. Two of these also contain zircons younger than 100 Ma, whereas the third sample contains only zircons older than 159 Ma. The zircons from this sample also exhibit an age spectrum different from that exhibited by the other samples. The exact significance of this sample is not clear as yet.  相似文献   

18.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   

19.
Relatively successive sequences of Late Mesozoic are preserved and exposed in Luxi Uplift (LU), eastern North China block (NCB), which is an important region to study the late Mesozoic tectonic evolution of the eastern NCB. In this study, in situ U–Pb ages and Hf isotopic analyses on detrital zircons from the sandstones of Jurassic Fangzi and Santai Formations in LU combining the analysis of sandstone detrital modes were performed, with an aim to trace the Jurassic sediment provenances and the tectonic–paleogeographic configuration of eastern NCB. Three sandstone samples (one from Fangzi Formation and two from Santai Formation) have very similar U–Pb age spectrums which can be divided into three major groups: Phanerozoic (I), Paleoproterozoic (II), and Neoarchean (III). Detrital zircons of Group II and Group III broadly match the age spectra of the basement of NCC which exposed extensively in the northern part. No middle Neoproterozoic magmatic zircons or Triassic metamorphic zircons were found in this study, ruling out the clastic provenance transported from the Sulu orogen to LU. Dominant zircon populations of Group Iare Late Paleozoic (250–393 Ma) recording the corresponding magmatic activities which are not found both in LU and its peripheral tectonic terranes, but can be well compared with that of the northern NCB (NNCB) and the Xing-Meng Orogenic Belt (XMOB). Furthermore, Hf isotope compositions of the Phanerozoic detrital zircons can be distinctly divided into two clusters with εHf(t) values ranging from −1.0 to +12.7 and −21.9 to −3.0, respectively resemble those from the XMOB and NCB (mainly from NNCB). Sandstone detrital modes analysis indicates the provenance came from the areas that have been eroded deeply to expose the basement rocks which accords with the tectonic setting of the NNCB. This research proposes that an evident mountain or provenance region once increasingly developed along NNCB during Early to Late Jurassic (182–155 Ma) due to the continuous collision of the Siberia and North China–Mongolian plates, easily shed mass clastic materials southward into the inner NCB and became the major provenance of Jurassic sediments in LU.  相似文献   

20.
Subduction–accretion complexes occur widely in the Central Asian Orogenic Belt (CAOB). Due to the scarcity of fossils, the depositional timing of the Habahe flysch sequence of the subduction–accretion complex in the Chinese Altai is poorly constrained, which gave rise to much controversy in understanding the time of the basement and the tectonic evolution of the Chinese Altai. U–Pb dating of detrital zircons from the Habahe sequence in the northwestern Chinese Altai reveals a young zircon population with a mean 206Pb/238U age around 438 Ma which, together with a mean 206Pb/238U age of 411 ± 5 Ma for the overlying rhyolite of the Dongxileke Formation, brackets the time of deposition of the sequence between early Silurian and early Devonian. The age of the Dongxileke rhyolite also indicates that the overlying Baihaba Formation possibly began to be deposited in the early Devonian, though U–Pb dating of detrital zircons from this formation gave a maximum depositional age of ~ 438 Ma. The youngest detrital zircons and metamorphic grains of the Habahe sequence reveal different provenance to the sequence in the east. The youngest and metamorphic zircon grains, with early Paleozoic, Neoproterozoic and pre-Neoproterozoic populations, suggest a multi-source for the Habahe sequence. The predominantly early Paleozoic zircons, characterized by concentric zoning, high Th/U ratios and euhedral shapes, imply that the sediments of the sequence were mostly derived from a proximal magmatic source. Based on the age patterns of the Neoproterozoic and pre-Neoproterozoic populations, the Tuva–Mongol Massif, along with adjacent island arcs and metamorphic belts, may be an alternative source region for the Habahe sequence. In view of new geochemical and chronological data for granitoids and advancement in the study of regional metamorphism in the Chinese Altai, we suggest a tectonic model of subduction beneath a huge subduction–accretion complex for the evolution of the Chinese Altai in the early Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号