首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
大孔吸附树脂纯化八角枫根中水杨苷工艺   总被引:1,自引:0,他引:1  
研究大孔树脂纯化八角枫根中水杨苷的最佳工艺条件。以水杨苷的吸附率和解吸附率为评价指标,筛选树脂种类,并优化吸附和洗脱条件。8种大孔吸附树脂中,HPD-826型大孔树脂对水杨苷具有较好的吸附分离性能,最佳的纯化工艺条件为上样液质量浓度45.12μg/mL、最大上样量6.5BV、径高比1:8、洗脱流速3BV/h,先用4BV的水洗柱除去水溶性杂质,再用5BV体积分数30%乙醇溶液洗脱。经HPD-826型大孔树脂处理后的水杨苷回收率可达78%左右,HPD-826大孔树脂对水杨苷纯化的综合性能较好,工艺稳定、可行,适合于工业化生产。  相似文献   

2.
以木瓜酒中单宁含量为指标,通过静态吸附试验从5种大孔树脂中筛选出HPD-100树脂,其吸附容量为每克干树脂吸附72.15 mg单宁.考察HPD-100树脂的吸附、解吸效果及其影响因素.结果表明,吸附最佳条件为pH6 0,静态吸附4h;动态吸附流速为2.0 BV/h,吸附体积达到5 BV时为吸附终点,吸附率为89.5%.静态解吸附最佳条件为洗脱液pH 7.0,洗脱时间6h,洗脱乙醇浓度75%;动态解吸附流速为1.0BV/h,解吸附体积达到1.6 BV时为解吸附终点,解吸附率为68.6%.HPD-100大孔吸附树脂对木瓜酒单宁具有良好富集作用,适于木瓜酒涩味的去除或单宁的分离纯化.  相似文献   

3.
比较D101、AB-8、HPD-100、HPD-400、HPD-500、HPD-722、DM130七种大孔吸附树脂对蛹虫草固体培养基中虫草素的吸附与解吸性能,筛选出HPD-100树脂为最佳树脂,并确定HPD-100树脂吸附分离最佳工艺条件:上样液质量浓度0.6mg/mL、上样流速3BV/h、上样体积6BV;解吸剂为体积分数25%乙醇溶液、解吸流速2BV/h、解吸体积4BV。根据此工艺条件,蛹虫草固体培养基粗提物经HPD-100树脂纯化后,虫草素产品纯度可达14.1%,较粗提物产品提高了8倍多。  相似文献   

4.
研究陕产重楼中总皂苷利用大孔吸附树脂纯化的最优工艺。应用7种大孔吸附树脂吸附重楼中的总皂苷进行静态实验,筛选得到最佳树脂;通过动态实验确定最佳树脂对重楼总皂苷的纯化的最优工艺参数。结果表明,HPD-400A树脂纯化重楼总皂苷的效果最优,最优工艺条件为上样液质量浓度5mg/mL,上样量8BV,流速3BV/h,解吸流速2BV/h,解吸剂体积分数75%的乙醇,洗脱剂用量4BV,按此工艺条件制备的重楼总皂苷的含量为62.68%;Freundlich等温吸附模型可更好的描述树脂对重楼总皂苷的吸附,采用HPD-400A树脂分离纯化陕产重楼中的总皂苷效果较好。  相似文献   

5.
李潇彬  顾曼琦  郑奎玲  卫钢  廖莉玲 《食品与机械》2016,32(11):163-165,216
采用Folin-Ciocalteu比色法测定多酚含量,研究10种大孔树脂对头花蓼总多酚的吸附和解吸效果,筛选出适合分离纯化头花蓼总多酚的树脂,并以总多酚的吸附率和解吸率为指标对HPD-722纯化头花蓼总多酚的工艺进行了研究。结果表明:HPD-722为纯化头花蓼总多酚的最佳树脂。确定其最佳工艺条件为:上样浓度控制在2.0~4.5 mg/mL,上样流速2BV/h,用体积为7.5BV的50%乙醇溶液集中洗脱。纯化后总多酚的含量可达到59.02%。  相似文献   

6.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

7.
研究比较大孔树脂对灵芝子实体和孢子粉两个不同部位中总三萜的吸附特性,优选其对灵芝总三萜的分离纯化工艺条件。采用紫外分光光度法测定灵芝子实体和孢子粉两个不同部位中总三萜的含量,选择8种大孔树脂,以总三萜吸附率和解吸率为指标,筛选最佳树脂型号,并考察最佳树脂纯化灵芝子实体和孢子粉中总三萜的工艺参数。结果表明:8种大孔树脂中,HPD-500型大孔树脂对灵芝子实体总三萜的吸附解吸效果最好,最佳纯化工艺条件为上样液浓度1.0 g干样/mL,最大上样量2 BV,用8.5 BV的75%乙醇进行洗脱,该工艺下灵芝子实体总三萜纯度达60.59%;而AB-8型大孔树脂对灵芝孢子粉总三萜的吸附解吸效果最好,且最佳纯化工艺条件为上样液浓度0.4 g干样/mL,最大上样量3 BV,用8.5 BV的95%乙醇进行洗脱,该工艺下灵芝孢子粉总三萜纯度达65.48%。综上,HPD-500型和AB-8型大孔树脂分别富集纯化灵芝子实体和灵芝孢子粉中总三萜的工艺效果显著,简单可行,为灵芝三萜的深入探究和工业化纯化灵芝子实体和孢子粉总三萜提供理论依据。  相似文献   

8.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

9.
目的研究ADS系列大孔吸附树脂分离纯化夏枯草穗总黄酮的工艺条件及参数。方法以树脂对夏枯草穗总黄酮的吸附量和洗脱率为指标,筛选ADS系列大孔吸附树脂分离纯化夏枯草穗总黄酮的工艺条件。结果 ADS-8型大孔吸附树脂对夏枯草穗总黄酮有较好的吸附分离性能,该树脂分离纯化夏枯草穗总黄酮的最佳工艺条件为:上柱液pH值5.0,1.20 mg/mL夏枯草提取液以流速2.0 BV/h上柱,洗脱剂乙醇体积分数40%,以1.5 BV/h的流速洗脱,收集洗脱液。经上述工艺纯化后,产品总黄酮含量达82.7%,收率66.2%。结论 ADS-8型大孔吸附树脂适于分离纯化夏枯草穗总黄酮。  相似文献   

10.
以牡丹籽壳低聚茋类化合物粗提物为原料,采用大孔吸附树脂富集纯化牡丹籽壳中的低聚茋类化合物,并研究树脂富集前后低聚茋类化合物对牡丹籽油抗氧化活性的影响。研究结果发现,HPD-100大孔吸附树脂较适合牡丹籽壳中低聚茋类化合物纯化,树脂的最佳吸附工艺:上样量100 mL,上样质量浓度为1.23 mg/mL,上样流速为2 BV/h;最佳洗脱工艺:体积分数为60%的乙醇溶液,洗脱体积为8 BV,流速为3BV/h。在优化的最佳条件下,牡丹籽壳中低聚茋类化合物的保留率为94.11%,总茋类化合物质量分数从12.32%提高至32.89%,提高了2.67倍。牡丹籽壳低聚茋类化合物抗氧化试验表明低聚茋类化合物可以有效延缓牡丹籽油的过氧化反应,其抗氧化性明显优于维生素C。研究表明,HPD-100大孔吸附树脂可以用于牡丹籽壳中低聚茋类化合物的富集分离,牡丹籽低聚茋类化合物是一种很有潜力的天然、安全、高效的抗氧化剂。  相似文献   

11.
以吸附—解吸率和总黄酮含量为考察指标,采用静态和动态吸附两种方法,进行大孔吸附树脂纯化薄荷总黄酮工艺优选。试验考察ADS-7、ADS-17、NKA-9、AB-8、D101、HPD-100六种大孔吸附树脂对薄荷总黄酮的纯化能力。结果表明:AB-8对薄荷总黄酮吸附与分离性能最佳,确定纯化薄荷总黄酮的最佳工艺条件为:流速1mL/min,上样液中薄荷总黄酮质量浓度为2.56 mg/mL,上样量3BV,解析液为4BV 30%乙醇,最终得到含量90.35%的薄荷总黄酮。上述工艺对薄荷总黄酮的分离高效、稳定、可靠,为薄荷资源的综合利用提供理论依据。  相似文献   

12.
采用柱层析法对野生越橘花色苷分离纯化进行研究。结果表明:HPD-700型大孔树脂对野生越橘花色苷的分离效果最佳,其适宜的分离条件为样品液pH2.0、花色苷质量浓度0.75mg/mL、最大上样量22BV、上样流速0.5mL/min,样品洗脱最佳乙醇体积分数60%、以流速1.5mL/min速度洗脱时、洗脱液量5BV为洗脱终点。该工艺生产的花色苷产品为紫黑色粉末,色价为62.40,回收率为86.20%。  相似文献   

13.
大孔树脂纯化银杏叶黄酮的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以脱脂银杏叶粉为原料,采用70%乙醇浸提法提取银杏叶黄酮,研究大孔树脂纯化银杏叶黄酮的工艺条件。以吸附率和解吸率为指标,考察了AB-8、D101、HPD-100 3种大孔树脂对银杏叶黄酮的吸附解吸性能,筛选出适合银杏叶黄酮分离纯化的树脂为AB-8型大孔树脂。结合静态与动态吸附解吸试验,得出AB-8大孔树脂分离纯化银杏叶黄酮的最佳工艺:将银杏叶黄酮提取原液稀释1.5倍(浓度为0.94 mg/mL)、调pH至4.85作为上样液,以1.5 BV/h的流速上样吸附,上样量200 mL,之后采用pH 4.95的80%乙醇作为洗脱剂,以2~2.5 BV/h的流速进行洗脱,洗脱剂用量约50 mL。在此纯化条件下所得银杏叶黄酮含量为26.16%,较纯化前提高了3.2倍。该纯化工艺条件科学合理,可有效用于银杏叶黄酮的分离富集,提高银杏叶提取物中的黄酮含量。  相似文献   

14.
目的:为探索适宜分离和纯化桑白皮多糖的大孔树脂,研究其最佳纯化工艺参数。方法:通过静态吸附-洗脱试验对十种不同型号大孔树脂(H103、HP20、AB-8、X-5、D-101、DM301、DA-201、NKA-9、HPD-722、HPD300)的吸附量、吸附率及解吸率进行考察,优选最佳纯化树脂,并研究了上样液pH、上样质量浓度、上样速度、洗脱剂体积分数、洗脱剂用量及洗脱流速对其纯化工艺的影响,确定最佳纯化工艺参数。结果:D-101型为最优树脂,最佳上样条件为:pH=3.0、上样浓度为4.0 mg/mL、上样速度为2.0 BV/h;最佳洗脱条件为:75%的乙醇洗脱液、洗脱剂用量为3.5 BV、流速为1.0 BV/h。经过该工艺纯化后,桑白皮中多糖的纯度由16.12%±1.20%提高到了74.45%±1.15%。结论:D-101型大孔树脂能够很好的富集、纯化桑白皮中的多糖,为更高效的利用桑白皮资源提供了理论依据。  相似文献   

15.
大孔吸附树脂分离纯化槲寄生中黄酮的研究   总被引:4,自引:0,他引:4  
李俶  倪永年  李莉 《食品科学》2008,29(2):68-71
目的:筛选出分离纯化槲寄生总黄酮的最佳树脂,并对影响分离纯化的因素进行研究,得到优化的纯化条件。方法:选择了四种大孔吸附树脂(AB-8、NKA-9、NKA-Ⅱ和D101)用来分离纯化槲寄生中的总黄酮,采用动态吸附-解吸方法,利用分光光度法测定总黄酮的含量,研究不同的大孔吸附树脂及其不同的工艺条件对总黄酮分离纯化的影响。结果:AB-8分离效果最好,其最佳工艺为上柱原液pH值4左右,上柱速度2BV/h,以40%乙醇为洗脱液控制洗脱液流速1BV/h,洗脱液用量为4BV。经AB-8纯化后,槲寄生产品中黄酮的纯度由12.16%提高到43.56%。结论:AB-8大孔树脂可以较好地分离纯化槲寄生黄酮。  相似文献   

16.
大孔吸附树脂法纯化苦豆子渣总黄酮工艺的研究   总被引:1,自引:0,他引:1  
叶学军  李力  杨晋 《食品科技》2012,(1):210-214
目的:考察5种大孔吸附树脂对苦豆子渣总黄酮的吸附分离性能。方法:以黄酮吸附量、解吸量为考察指标,采用静态和动态吸附分离法确定适合的大孔吸附树脂和纯化工艺条件。结果:AB-8型大孔吸附树脂对苦豆子渣总黄酮有良好的吸附分离性能,其最佳工艺为:最佳上样量为0.864mg/mL(树脂)、上样液流速为2BV/h、解吸液为95%乙醇、解吸液用量为4BV、解吸附流速为2BV/h。结论:AB-8可较好的吸附分离苦豆子渣总黄酮,纯化后黄酮纯度提高1倍以上。  相似文献   

17.
于博  王旭峰  李文  李博  何计国 《食品科学》2009,30(14):132-135
研究委陵菜黄酮的提取及大孔树脂纯化条件。结果表明:委陵菜黄酮的最佳提取条件为溶剂采用60% 乙醇、料液比1:40(m/V)、提取时间75min、超声温度80℃,各因素均对提取率有显著(p < 0.05)影响,此条件下,提取量可达39.329mg/g;HPD600 型树脂对委陵菜中的黄酮有较好的吸附和洗脱效果,柱体积为50ml,其纯化条件为40BV,流速2BV/h,水洗,然后用5BV、60% 乙醇洗脱。经纯化后委陵菜黄酮纯度为60.28%;最终产品中黄酮得率为2.29%。  相似文献   

18.
目的利用大孔树脂来纯化马兰头中粗黄酮,并确定纯化黄酮的最佳工艺。方法以黄酮回收率为指标,在单因素实验的基础上运用Box-Behnken响应面法(response surface methodology,RSM)设计三因素三水平实验以获得最佳纯化条件。结果 HPD-600大孔吸附树脂纯化马兰头粗提液的最佳工艺条件为:上样浓度0.93 mg/mL、上样pH为3.00、洗脱剂体积分数为84.17%、吸附速率1 BV/h,洗脱速率1 BV/h,此条件下马兰头总黄酮的质量分数由纯化前的4.11%提高到纯化后的50.80%。结论利用HPD-600型大孔树脂可以较好地纯化马兰头中的总黄酮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号