首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
3.
《Genetics in medicine》2015,17(2):108-116
PurposeNewborn screening (NBS) for cystic fibrosis (CF) was implemented throughout France in 2002. It involves a four-tiered procedure: immunoreactive trypsin (IRT)/DNA/IRT/sweat test was implemented throughout France in 2002. The aim of this study was to assess the performance of molecular CFTR gene analysis from the French NBS cohort, to evaluate CF incidence, mutation detection rate, and allelic heterogeneity.MethodsDuring the 8-year period, 5,947,148 newborns were screened for cystic fibrosis. The data were collected by the Association Française pour le Dépistage et la Prévention des Handicaps de l’Enfant. The mutations identified were classified into four groups based on their potential for causing disease, and a diagnostic algorithm was proposed.ResultsCombining the genetic and sweat test results, 1,160 neonates were diagnosed as having cystic fibrosis. The corresponding incidence, including both the meconium ileus (MI) and false-negative cases, was calculated at 1 in 4,726 live births. The CF30 kit, completed with a comprehensive CFTR gene analysis, provides an excellent detection rate of 99.77% for the mutated alleles, enabling the identification of a complete genotype in 99.55% of affected neonates. With more than 200 different mutations characterized, we confirmed the French allelic heterogeneity.ConclusionThe very good sensitivity, specificity, and positive predictive value obtained suggest that the four-tiered IRT/DNA/IRT/sweat test procedure may provide an effective strategy for newborn screening for cystic fibrosis.  相似文献   

4.
Pharmacological rescue of mutant cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) depends on the specific defect caused by different mutation classes. We asked whether a patient with the rare p.Gly970Asp (c.2909G>A) mutation could benefit from CFTR pharmacotherapy since a similar missense mutant p.Gly970Arg (c.2908G>C) was previously found to be sensitive to potentiators in vitro but not in vivo. By complementary DNA transfection, we found that both mutations are associated with defective CFTR function amenable to pharmacological treatment. However, analysis of messenger RNA (mRNA) from patient's cells revealed that c.2908G>C impairs RNA splicing whereas c.2909G>A does not perturb splicing and leads to the expected p.Gly970Asp mutation. In agreement with these results, nasal epithelial cells from the p.Gly970Asp patient showed significant improvement of CFTR function upon pharmacological treatment. Our results underline the importance of controlling the effect of CF mutation at the mRNA level to determine if the pharmacotherapy of CFTR basic defect is appropriate.  相似文献   

5.
Neonates positive for immunoreactive trypsinogen assay (IRT) and negative for sweat test have formerly been found to carry the major cystic fibrosis (CF) mutation, delta F508, much more frequently than the general population. Among the 716 IRT positive newborns detected by a three tier (IRT, mutation analysis plus meconium lactase assay, sweat test) CF screening programme in north eastern Italy during the period January 1993 to March 1996, we found 45 carriers, a number significantly higher than the expected 17 (p < 0.001). We speculated that some of these heterozygotes could actually be affected by a very mild form of CF, and carry on the other chromosome an undetected CFTR mutation or a DNA variant, such as the 5-thymidine allele in intron 8 of the CFTR gene (IVS8-5T). This hypothesis was tested in four samples; group A (the 45 carriers mentioned above), group B (51 non-carrier, IRT positive neonates), group C (50 IRT negative neonates), and group D (90 CF adult female carriers). Chromosomes with IVS8-5T were seven (7.78%) in group A, seven (6.86%) in group B, five (5%) in group C, and four in group D (2.22%). The 5T prevalence in group A was significantly higher (p < 0.05) compared to group D; similarly, a higher (p < 0.05) 5T frequency in group A compared to group C was detected by considering the chromosomes free from CFTR mutations. This study is consistent with previous papers in finding among neonates with high trypsin levels a CF carrier frequency significantly higher than that expected. It is also suggested that in at least some babies raised trypsin levels at birth could be a phenotypic expression of compound heterozygosity for a major CF mutation plus IVS8-5T.  相似文献   

6.
Glycogen storage disease type IX (GSD IX) is caused by a deficiency of hepatic phosphorylase kinase. The aim of this study was to clarify the clinical features, long term outcomes, and genetic analysis of GSD IX in Korea. A GSD gene panel was created and hybridization capture-based next-generation sequencing was performed. We investigated clinical laboratory data, results of molecular genetic analysis, liver biopsy findings, and long-term outcomes. Ten children were diagnosed with GSD IX at Seoul National University Children's Hospital. Hypoglycemia, hyperlactacidemia, hypertriglyceridemia, hyperuricemia, liver fibrosis on liver biopsy, and short stature was found in 30%, 56%, 100%, 60%, 80% and 50% of the children, respectively. Seven PHKA2 variants were identified in eight children with GSD IXa—one nonsense (c.2268dupT; p.(Asp757Ter)), two splicing (c.918+1G > A, c.718-2A > G), one frameshift (c.405_419delinsTCCTGGCC; p.(Asp136ProfsTer11)), and three missense variants (c.3628G > A; p.(Gly1210Arg), c.1245G > T and c.2746C > T; p.(Arg916Trp)). Two variants of PHKG2 were identified in two children with GSD IXc—one frameshift (c.783delC; p.(Ser262AlafsTer6)) and one missense (c.661G > A; p.(Val221Met)). Elevated liver enzymes and hypertriglyceridemia in children with GSD IXa tended to improve with age. For the first time, we report hepatocellular carcinoma in a patient with GSD IXc. The GSD gene panel is a useful diagnostic tool to confirm GSD IX. The clinical phenotype of GSD IXc is severe and monitoring for the development of hepatocellular carcinoma should be implemented.  相似文献   

7.
Molecules correcting the trafficking (correctors) and gating defects (potentiators) of the cystic fibrosis causing mutation c.1521_1523delCTT (p.Phe508del) begin to be a useful treatment for CF patients bearing p.Phe508del. This mutation has been identified in different genetic contexts, alone or in combination with variants in cis. Until now, 21 exonic variants in cis of p.Phe508del have been identified, albeit at a low frequency. The aim of this study was to evaluate their impact on the efficacy of CFTR‐directed corrector/potentiator therapy (Orkambi). The analysis by minigene showed that two out of 15 cis variants tested increased exon skipping (c.609C > T and c.2770G > A). Four cis variants were studied functionally in the absence of p.Phe508del, one of which was found to be deleterious for protein maturation c.1399C > T (p.Leu467Phe). In the presence of p.Phe508del, this variant was the only to prevent the response to Orkambi treatment. This study showed that some patients carrying p.Phe508del complex alleles are predicted to poorly respond to corrector/potentiator treatments. Our results underline the importance to validate treatment efficacy in the context of complex alleles.  相似文献   

8.
The results of two different protocols of neonatal cystic fibrosis (CF) screening in the Lazio region of Italy are reported. The first study, conducted from 1992 to 2000 on about 200,000 newborns, consisted of an immunoreactive trypsin (IRT) protocol without mutation analysis of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, referred to as the IRT/IRT protocol. Approximately 5% of the newborns with a positive first IRT test were also positive at the second test; approximately 57% of the newborns with a high IRT level at the second test were subsequently found to be affected by CF. In September 1998, a second protocol that included mutation analysis (IRT/DNA/IRT protocol) was started. Comparison of the two different screening protocols in terms of sensitivity in detecting CF patients demonstrated that the IRT/DNA/IRT protocol is more effective because it is able to detect a higher number of CF patients than the IRT/IRT protocol. In the same period, in addition to the overall diagnosis performed on a screening basis, 64 other subjects were identified as being affected by CF on the basis of symptomatic findings. The overall incidence of CF (screening + symptoms) was 1 : 2982, while that for carriers was 1 : 27. The sensitivity of the screening program increased over the period from 1992 to 2000, with the enhanced sensitivity in the past 2 years being due to the introduction of the IRT/DNA/IRT protocol.  相似文献   

9.
Peters plus syndrome (PPS) is a rare autosomal‐recessive disorder characterized by Peters anomaly of the eye, short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable other systemic abnormalities. In this report, we describe screening of 64 patients affected with PPS, isolated Peters anomaly and PPS‐like phenotypes. Mutations in the coding region of B3GALTL were identified in nine patients; six had a documented phenotype of classic PPS and the remaining three had a clinical diagnosis of PPS with incomplete clinical documentation. A total of nine different pathogenic alleles were identified. Five alleles are novel including one frameshift, c.168dupA, p.(Gly57Argfs*11), one nonsense, c.1234C>T, p.(Arg412*), two missense, c.1045G>A, p.(Asp349Asn) and c.1181G>A, p.(Gly394Glu), and one splicing, c.347+5G>T, mutations. Consistent with previous reports, the c.660+1G>A mutation was the most common mutation identified, seen in eight of the nine patients and accounting for 55% of pathogenic alleles in this study and 69% of all reported pathogenic alleles; while two patients were homozygous for this mutation, the majority had a second rare pathogenic allele. We also report the absence of B3GALTL mutations in 55 cases of PPS‐like phenotypes or isolated Peters anomaly, further establishing the strong association of B3GALTL mutations with classic PPS only.  相似文献   

10.
Genotype–phenotype correlations in cystic fibrosis (CF) may be difficult to establish because of phenotype variability, which is associated with certain CF transmembrane conductance regulator (CFTR) gene mutations and the existence of complex alleles. To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype–phenotype correlation study, collected epidemiological data, and investigated structure–function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg;Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys]. Among 153 patients carrying at least one of these mutations, only three had classical CF and all carried p.Gly149Arg in the triple mutant. Sixty‐four had isolated infertility and seven were healthy individuals with a severe mutation in trans, but none had p.Gly149Arg. Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance. Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR‐related disorders. The present study emphasizes the importance of comprehensive genotype–phenotype and functional studies in elucidating the impact of mutations on clinical phenotype. Hum Mutat 33:1557–1565, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Familial hypercholesterolemia is an autosomal dominant disease of lipid metabolism caused by defects in the genes LDLR, APOB, and PCSK9. The prevalence of heterozygous familial hypercholesterolemia (HeFH) is estimated between 1/200 and 1/250. Early detection of patients with FH allows initiation of treatment, thus reducing the risk of coronary heart disease. In this study, we performed in vitro characterization of new LDLR variants found in our patients. Genetic analysis was performed by Next Generation Sequencing using a customized panel of 198 genes in DNA samples of 516 subjects with a clinical diagnosis of probable or definitive FH. All new LDLR variants found in our patients were functionally validated in CHO‐ldlA7 cells. The LDLR activity was measured by flow cytometry and LDLR expression was detected by immunofluorescence. Seven new variants at LDLR were tested: c.518 G>C;p.(Cys173Ser), c.[684 G>T;694 G>T];p.[Glu228Asp;Ala232Ser], c.926C>A;p.(Pro309His), c.1261A>G;p.(Ser421Gly), c.1594T>A;p.(Tyr532Asn), and c.2138delC;p.(Thr713Lysfs*17). We classified all variants as pathogenic except p.(Ser421Gly) and p.(Ala232Ser). The functional in vitro characterization of rare variants at the LDLR is a useful tool to classify the new variants. This approach allows us to confirm the genetic diagnosis of FH, avoiding the classification as “uncertain significant variants”, and therefore, carry out cascade family screening.  相似文献   

12.
《Genetics in medicine》2016,18(3):231-238
PurposeMany regions have implemented newborn screening (NBS) for cystic fibrosis (CF) using a limited panel of cystic fibrosis transmembrane regulator (CFTR) mutations after immunoreactive trypsinogen (IRT) analysis. We sought to assess the feasibility of further improving the screening using next-generation sequencing (NGS) technology.MethodsAn NGS assay was used to detect 162 CFTR mutations/variants characterized by the CFTR2 project. We used 67 dried blood spots (DBSs) containing 48 distinct CFTR mutations to validate the assay. NGS assay was retrospectively performed on 165 CF screen–positive samples with one CFTR mutation.ResultsThe NGS assay was successfully performed using DNA isolated from DBSs, and it correctly detected all CFTR mutations in the validation. Among 165 screen-positive infants with one CFTR mutation, no additional disease-causing mutation was identified in 151 samples consistent with normal sweat tests. Five infants had a CF-causing mutation that was not included in this panel, and nine with two CF-causing mutations were identified.ConclusionThe NGS assay was 100% concordant with traditional methods. Retrospective analysis results indicate an IRT/NGS screening algorithm would enable high sensitivity, better specificity and positive predictive value (PPV). This study lays the foundation for prospective studies and for introducing NGS in NBS laboratories.  相似文献   

13.
This project expands the disease spectrum for mutations in GJA8 to include total sclerocornea, rudimentary lenses and microphthalmia, in addition to this gene's previously known role in isolated congenital cataracts. Ophthalmic findings revealed bilateral total sclerocornea in 3 probands, with small abnormal lenses in 2 of the cases, and cataracts and microphthalmia in 1 case. Next‐generation sequencing revealed de novo heterozygous mutations affecting the same codon of GJA8 : (c.281G>A; p.(Gly94Glu) and c.280G>C; p.(Gly94Arg)) in 2 of the probands, in addition to the c.151G>A; p.(Asp51Asn) mutation we had previously identified in the third case. In silico analysis predicted all of the mutations to be pathogenic. These cases show that deleterious, heterozygous mutations in GJA8 can lead to a severe ocular phenotype of total sclerocornea, abnormal lenses, and/or cataracts with or without microphthalmia, broadening the phenotype associated with this gene. GJA8 should be included when investigating patients with the severe anterior segment abnormality of total sclerocornea.  相似文献   

14.
Following cystic fibrosis (CF) neonatal screening implementation, a high frequency of heterozygotes has been reported among neonates with elevated immunoreactive trypsinogen (IRT) and normal sweat chloride levels. We studied the relationship between normal IRT values and CF heterozygosity: 10,000 neonates were screened for CF by IRT measurement and tested for 40 CF mutations; the 294 carriers detected were coupled with newborns negative to the same genetic testing, and the two groups' IRT levels compared. Heterozygotes had higher IRT levels than their controls (mean 35.32 vs. 27.58 microg/L, P<0.001). Even within normal trypsinogen range, the probability of being a CF carrier increases with neonatal IRT concentration.  相似文献   

15.
EXOSC3-related autosomal recessive neurodevelopmental disorders are rare entities with variable clinical course and prognosis. They are characterized by hypoplasia of cerebellar structures and pons, degeneration of the anterior horn cells and motor as well as neurocognitive impairment. Phenotypic expression is variable with an overall poor outcome. Current research suggests clear genotype-phenotype correlations among EXOSC3-pathogenic-variants carriers. Homozygosity for the EXOSC3 variant c.395A > C, p.(Asp132Ala) is proposed to lead to a rather mild phenotype compared to compound-heterozygous EXOSC3-pathogenic-variants carriers with lethal neurological disease in very early childhood. In this study, we report two siblings (21- and 8-year-old) affected by PCH1B with an unusual presentation. We identified compound heterozygosity for the well-established EXOSC3 variant c.395A > C, p.(Asp132Ala) and the novel variant c.572G > A, p.(Gly191Asp), expanding the genetic spectrum. Phenotypic presentation of the siblings was strikingly different from that of literature reports with a surprisingly mild disease manifestation and an unexpected intrafamilial variability. This study demonstrates the extensive clinical heterogeneity and the broad phenotypic spectrum associated with EXOSC3-associated disorders. Enlargement of sample sizes and reports of novel cases will be essential for the delineation of associated phenotypes.  相似文献   

16.
The neonatal screening protocol for cystic fibrosis (CF) is based on a first determination of blood immunoreactive trypsin (IRT1), followed by a first level genetic test that includes the 31 worldwide most common mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene (DNA31), and a second determination of blood immunoreactive trypsin (IRT2). This approach identifies, in addition to affected subjects, a high proportion of newborns with hypertrypsinaemia at birth, in whom only one mutation is identified and who have a negative or borderline sweat test and pancreatic sufficiency. Although it has been suggested that hypertrypsinaemia may be caused by a single CFTR mutation, whether such neonates should be merely considered as healthy carriers remains a matter of debate as hypertrypsinaemia at birth may be a biochemical marker of a CFTR malfunction because of a second mild mutation. We analyzed, by means of an extended sequencing protocol, 32 newborns who tested positive at an IRT1/DNA31/IRT2 screening protocol and in whom only one CFTR mutation was found. The results obtained demonstrate that 62.5% of these newborns were also carrying a second mild CFTR mutation. The high proportion of compound heterozygous subjects, combined with the results of a 4-year follow-up in nine of these subjects all of whom displaying initial CF clinical symptoms, suggest that it may be possible to use the IRT1/DNA31/IRT2 protocol of neonatal screening to identify newborns with atypical forms of CF. In view of these findings, an extended genetic search for subjects with compound heterozygosity and a periodic clinical assessment should be considered.  相似文献   

17.
Mutations in the SQSTM1 gene have been reported to be associated with amyotrophic lateral sclerosis (ALS). We sought to determine the frequency of these mutations in a UK familial ALS (FALS) cohort. Sequences of all eight exons of the SQSTM1 gene were analysed in index cases from 61 different FALS kindred lacking known FALS mutations. Six exonic variants c.463G>A, p.(Glu155Lys), c.822G>C, p.(Glu274Asp), c.888G>T, p.(=), c.954C>T, p.(=), c.1038G>A, p.(=) and c.1175C>T, p.(Pro392Leu) were identified in five FALS index cases, three of which were non-synonymous and three were synonymous. One index case harboured three variants (c.822G>C, c.888G>T and c.954C>T), and a second index case harboured two variants (c.822G>C and c.954C>T). Only the p.(Pro392Leu) and p.(Glu155Lys) mutations were predicted to be pathogenic. In one p.(Pro392Leu) kindred, the carrier developed both ALS and Paget''s disease of bone (PDB), and, in the p.(Glu155Lys) kindred, the father of the proband developed PDB. All p.(Pro392Leu) carriers were heterozygous for a previously reported founder haplotype for PDB, where this mutation has an established causal effect. The frequency of the p.(Pro392Leu) mutation in this UK FALS cohort was 2.3% and 0.97% overall including three previously screened FALS cohorts. Our results confirm the presence of the p.(Pro392Leu) SQSTM1 mutation in FALS. This mutation is the most common SQSTM1 mutation found in ALS to date, and a likely pathogenicity is supported by having an established causal role in PDB. The occurrence of the same mutation in ALS and PDB is indicative of a common pathogenic pathway that converges on protein homeostasis.  相似文献   

18.
Objective To explore the pathogenesis of protein C deficiency in two pedigrees through mutation detectionand model analysis. Methods Chromogenic substrate method and enzyme linked immunosorbent assay (ELISA) wereused to determine the plasma protein C activity (PC : A) and protein C antigen (PC : Ag) in the two probandsand their family members. All of the 9 exons and intron-exon boundaries of the PROC gene were amplified by PCRand analyzed with Sanger sequencing after purification. Corresponding mutate sites of the family members werealso amplified and sequenced. The PolyPhen-2 software was used to analyze the perniciousness of the mutationsand Clustal X was to analyze the conservatism. The protein model and amino acids interaction of the mutationswere analyzed by Swiss-PdbViewer software. Results The PC : A and PC : Ag of proband 1 was 30% and 35%, whilePC : A of his father, mother and aunt were all slightly under the reference range. Two heterozygous missensemutations were found in exons 7 and 5 of the PROC gene, namely c. 565 C>T (p. Argl47Trp) and c. 383 G >A (p. Gly86Asp). His father and aunt were carriers for c. 565 C>T, while his mother had carried c. 383 G>A. The PC : A of proband 2 and his son were 50% and 64% , respectively. And they were both positive for p. Argl47Trp. Analysis of PolyPhen-2 indicated that p. Argl47Trp was benign, while p. Gly86Asp was damaging. Clustal X analysis indicated that the p. Argl47Trp was non-conservative, while the p. Gly86Asp was highly conservative. Modeling for the mutant proteins revealed that the simple aromatic ring of Trpl47 in p.Argl47Trp destroyed the two hydrogen bonds between Argl47-Lysl46 and Argl47-Lysl51, and steric hindranted withArgl78. The side chain of Asp86 extended and generated steric clash with Gln90 with the occurrence of p.Gly86Asp. The change of hydrogen bonds and steric effects has altered the spatial configuration of amino acids, which led to unstable mutate proteins and interfered with the secretion. Conclusion Both probands hadhereditary protein C deficiencies, for which their parents were all carriers. The heterozygous mutations p.Argl47Trp and p. Gly86Asp were the main cause for PC : A activity decrease. Among these, p. Gly86Asp wasdiscovered for the first time.  相似文献   

19.
20.
Nowadays, most of the neonatal screening programs for cystic fibrosis (CF) combine the assay of immunoreactive trypsinogen (IRT) with the analysis of the most common mutations of the CFTR gene. The efficiency of this strategy is now well established, but the identification of heterozygotes among neonates with increased IRT is perceived as a drawback. We proposed to assess the heterozygosity frequency among the children with hypertrypsinaemia detected through the CF screening program implemented in Brittany (France) 10 years ago, to describe the CFTR mutations detected in them and to determine the frequency of the IVS8-5T variant. The molecular analysis relies, in our protocol, on the systematic analysis of three exons of the gene (7-10-11). A total of 160,019 babies were screened for CF in western Brittany between 1992 and 1998. Of the 1964 newborns with increased IRT (1.2%), 60 were CF and 213 were carriers. Heterozygosity frequency was 12.8%), i.e. 3 times greater than in the general population (3.9%; p < 10(-6)), Variability of mutations detected in carriers was greater than in CF children (21 mutations versus 10) and a high proportion of mild mutations or variants (A349V, R297Q, R347H, V317A, G544S, R553G, etc) was observed in carriers. The allelic frequency of the 5T (5.6%) was not significantly increased in this cohort. This study is consistent with previous ones in finding a significantly higher rate of heterozygotes than expected among neonates with hypertrypsinaemia. The strategy of screening used here allows to highlight the variability of mutations detected in heterozygotes and to show that severe mutations, as well as mild mutations, have been observed in neonates with hypertrypsinaemia. If there is no doubt that neonatal hypertrypsinaemia is associated with an elevated frequency of carriers, the underlying mechanisms remain obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号