首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The boreal summer intraseasonal oscillation (BSISO) of the Asian summer monsoon (ASM) is one of the most prominent sources of short-term climate variability in the global monsoon system. Compared with the related Madden-Julian Oscillation (MJO) it is more complex in nature, with prominent northward propagation and variability extending much further from the equator. In order to facilitate detection, monitoring and prediction of the BSISO we suggest two real-time indices: BSISO1 and BSISO2, based on multivariate empirical orthogonal function (MV-EOF) analysis of daily anomalies of outgoing longwave radiation (OLR) and zonal wind at 850 hPa (U850) in the region 10°S–40°N, 40°–160°E, for the extended boreal summer (May–October) season over the 30-year period 1981–2010. BSISO1 is defined by the first two principal components (PCs) of the MV-EOF analysis, which together represent the canonical northward propagating variability that often occurs in conjunction with the eastward MJO with quasi-oscillating periods of 30–60 days. BSISO2 is defined by the third and fourth PCs, which together mainly capture the northward/northwestward propagating variability with periods of 10–30 days during primarily the pre-monsoon and monsoon-onset season. The BSISO1 circulation cells are more Rossby wave like with a northwest to southeast slope, whereas the circulation associated with BSISO2 is more elongated and front-like with a southwest to northeast slope. BSISO2 is shown to modulate the timing of the onset of Indian and South China Sea monsoons. Together, the two BSISO indices are capable of describing a large fraction of the total intraseasonal variability in the ASM region, and better represent the northward and northwestward propagation than the real-time multivariate MJO (RMM) index of Wheeler and Hendon.  相似文献   

2.
El Ni?o Southern Oscillation (ENSO) and given phases of the Madden?CJulian Oscillation (MJO) show similar regional signatures over the Equatorial Indian Ocean, consisting in an enhancement or reversing of the convective and dynamic zonal gradients between East Africa and the Maritime Continent of Indonesia. This study analyses how these two modes of variability add or cancel their effects at their respective timescales, through an investigation of the equatorial cellular circulations over the central Indian Ocean. Results show that (1) the wind shear between the lower and upper troposphere is related to marked regional rainfall anomalies and is embedded in larger-scale atmospheric configurations, involving the Southern Oscillation; (2) the intraseasonal (30?C60?days) and interannual (4?C5?years) timescales are the most energetic frequencies that modulate these circulations, confirming the implication of the MJO and ENSO; (3) extreme values of the Indian Ocean wind shear result from the combination of El Ni?o and the MJO phase enhancing atmospheric convection over Africa, or La Ni?a and the MJO phase associated with convective activity over the Maritime Continent. Consequences for regional rainfall anomalies over East Africa and Indonesia are then discussed.  相似文献   

3.
Bimodal representation of the tropical intraseasonal oscillation   总被引:2,自引:1,他引:1  
The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns between boreal winter and summer. To accurately represent the state of the ISO at any particular time of a year, a bimodal ISO index was developed. It consists of Madden-Julian Oscillation (MJO) mode with predominant eastward propagation along the equator and Boreal Summer ISO (BSISO) mode with prominent northward propagation and large variability in off-equatorial monsoon trough regions. The spatial–temporal patterns of the MJO and BSISO modes are identified with the extended empirical orthogonal function analysis of 31?years (1979–2009) OLR data for the December–February and June–August period, respectively. The dominant mode of the ISO at any given time can be judged by the proportions of the OLR anomalies projected onto the two modes. The bimodal ISO index provides objective and quantitative measures on the annual and interannual variations of the predominant ISO modes. It is shown that from December to April the MJO mode dominates while from June to October the BSISO mode dominates. May and November are transitional months when the predominant mode changes from one to the other. It is also shown that the fractional variance reconstructed based on the bimodal index is significantly higher than the counterpart reconstructed based on the Wheeler and Hendon’s index. The bimodal ISO index provides a reliable real time monitoring skill, too. The method and results provide critical information in assessing models’ performance to reproduce the ISO and developing further research on predictability of the ISO and are also useful for a variety of scientific and practical purposes.  相似文献   

4.
Recent studies have shown that the Madden–Julian Oscillation (MJO) impacts the leading modes of intraseasonal variability in the northern hemisphere extratropics, providing a possible source of predictive skill over North America at intraseasonal timescales. We find that a k-means cluster analysis of mid-level geopotential height anomalies over the North American region identifies several wintertime cluster patterns whose probabilities are strongly modulated during and after MJO events, particularly during certain phases of the El Niño-Southern Oscillation (ENSO). We use a simple new optimization method for determining the number of clusters, k, and show that it results in a set of clusters which are robust to changes in the domain or time period examined. Several of the resulting cluster patterns resemble linear combinations of the Arctic Oscillation (AO) and the Pacific/North American (PNA) teleconnection pattern, but show even stronger responses to the MJO and ENSO than clusters based on the AO and PNA alone. A cluster resembling the positive (negative) PNA has elevated probabilities approximately 8–14 days following phase 6 (phase 3) of the MJO, while a negative AO-like cluster has elevated probabilities 10–20 days following phase 7 of the MJO. The observed relationships are relatively well reproduced in the 11-year daily reforecast dataset from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). This study statistically links MJO activity in the tropics to common intraseasonal circulation anomalies over the North American sector, establishing a framework that may be useful for improving extended range forecasts over this region.  相似文献   

5.
Climate variability modes, usually known as primary climate phenomena, are well recognized as the most important predictability sources in subseasonal–interannual climate prediction. This paper begins by reviewing the research and development carried out, and the recent progress made, at the Beijing Climate Center (BCC) in predicting some primary climate variability modes. These include the El Niño–Southern Oscillation (ENSO), Madden–Julian Oscillation (MJO), and Arctic Oscillation (AO), on global scales, as well as the sea surface temperature (SST) modes in the Indian Ocean and North Atlantic, western Pacific subtropical high (WPSH), and the East Asian winter and summer monsoons (EAWM and EASM, respectively), on regional scales. Based on its latest climate and statistical models, the BCC has established a climate phenomenon prediction system (CPPS) and completed a hindcast experiment for the period 1991–2014. The performance of the CPPS in predicting such climate variability modes is systematically evaluated. The results show that skillful predictions have been made for ENSO, MJO, the Indian Ocean basin mode, the WPSH, and partly for the EASM, whereas less skillful predictions were made for the Indian Ocean Dipole (IOD) and North Atlantic SST Tripole, and no clear skill at all for the AO, subtropical IOD, and EAWM. Improvements in the prediction of these climate variability modes with low skill need to be achieved by improving the BCC’s climate models, developing physically based statistical models as well as correction methods for model predictions. Some of the monitoring/prediction products of the BCC-CPPS are also introduced in this paper.  相似文献   

6.
ENSO regulation of MJO teleconnection   总被引:1,自引:0,他引:1  
The extratropical teleconnections associated with Madden?CJulian Oscillation (MJO) are shown to have an action center in the North Pacific where the pressure anomalies have opposite polarities between the Phase 3 (convective Indian Ocean) and Phase 7 (convective western Pacific) of the MJO. The teleconnection in the same phase of MJO may induce opposite anomalies over East Asia and North America between El Ni?o and La Ni?a years. During MJO Phase 3, a gigantic North Pacific anticyclonic anomaly occurs during La Ni?a, making coastal northeast Asia warmer/wetter than normal, but the west US colder/drier; whereas during El Ni?o the anticyclonic anomaly is confined to the central North Pacific, hence the northwest US experiences warmer than normal weather under influence of a downstream cyclonic anomaly. During Phase 7, an extratropical cyclonic anomaly forms over the northwest Pacific during La Ni?a due to convective enhancement over the Philippine Sea, causing bitter winter monsoon over Japan; whereas during El Ni?o, the corresponding cyclonic anomaly shifts to the northeast Pacific due to enhanced convection over the equatorial central Pacific, which causes warm and wet conditions along the west coast of US and Canada. Further, the presence of ENSO-induced seasonal anomalies can significantly modify MJO teleconnection, but the aforementioned MJO teleconnection can still be well identified. During Phase 3, the MJO teleconnection pattern over North Pacific will be counterbalanced (enhanced) by El Ni?o (La Ni?a)-induced seasonal mean anomalies. During Phase 7, on the other hand, the MJO teleconnection anomalies in the northeastern Pacific will be enhanced during El Ni?o but reduced during La Ni?a; thereby the impacts of MJO teleconnection on the North America is expected to be stronger during El Ni?o than during La Ni?a.  相似文献   

7.
利用1979—2018年夏季逐日观测和再分析数据,对北半球夏季热带季节内振荡影响我国夏季降水的规律和预测方法开展了研究。首先,利用非传统滤波即异常相对倾向(Anomalous Relative Tendency,ART)方法获取了气象要素的次季节变化分量,并采用EOF分析方法提取了北半球夏季热带主要季节内振荡信号,结果表明向外长波辐射(Outgoing Longwave Radiation,OLR)异常相对倾向EOF前两个模态共同反映了北半球夏季起源于印度洋并向东和向北传播的、具有30~60 d周期的季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)信号。回归分析表明,该季节内振荡信号能够导致当地及其北面地区低层风场和位势高度场异常,影响该地区及其北面地区的水汽辐合辐散,从而能引起我国尤其是我国南方地区季节内旱涝变化,并一定程度上反映了我国异常雨带的向北推进过程。而后,将提取的热带主要季节内振荡信号作为预测因子,将降水异常相对倾向作为先行预板对象,利用多元线性回归方法构建了我国夏季旬降水异常相对倾向的预报模型,将预报的旬降水异常相对倾向加上观测已知的降水近期背景距平,从而得到旬降水距平的预报结果。通过历史回报和交叉检验,评估了该模型对梅雨期我国江淮流域降水(包括2020年梅汛期异常降水)的次季节预测能力。  相似文献   

8.
本文重点分析对比热带夏季季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)1987—1995年(P1),1996—2007年(P2)和2008—2017年(P3)三阶段东亚—西北太平洋地区(East Asian-Western North Pacific,EAWNP)5—9月BSISO年代际变化的季节内差异特征。结果表明,在P1和P3两阶段,5—7月EAWNP BSISO强度几乎相同,但P2中每个月均显著增强,表明5—7月EAWNP BSISO经历了P1—P2增强和P2—P3减弱的年代际变化。8月,EAWNP BSISO强度从P1到P3逐渐增强,P3阶段比P1有显著增强,孟加拉湾和东亚副热带区域的BSISO活动增强。和P1相比,南海地区BSISO活动在P2阶段异常活跃,在5—7月强度增强,并且北传显著。在P2阶段,负位相的太平洋年代际(Interdecadal Pacific Oscillation,IPO)对应的赤道西太平洋和印度洋海温增暖,及Walker环流的增强为5—7月BSISO活动提供了水汽和对流发展的有利条件,而南海地区北传对流的叠加作用以及南海海温增暖进一步加强了BSISO的强度和北传。在P3阶段,8月孟加拉湾BSISO活动增强,除了热带印度洋一致增暖和太平洋ENSO型海温为BSISO活动提供水汽和对流发展的条件外,70°~90°E区域局地Hadley环流引起的上升运动也对BSISO的强度增强和北传有贡献。  相似文献   

9.
Subseasonal forecast skills and biases of global summer monsoons are diagnosed using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2. Predictions for subseasonal variability of zonal wind and precipitation are generally more skillful over the Asian and Australian monsoon regions than other monsoon regions. Climatologically, forecasts for the variations of dynamical monsoon indices have high skills at leads of about 2 weeks. However, apparent interannual differences exist, with high skills up to 5 weeks in exceptional cases. Comparisons for the relationships of monsoon indices with atmospheric circulation and precipitation patterns between skillful and unskillful forecasts indicate that skills for subseasonal variability of a monsoon index depend partially on the degree to which the observed variability of the index attributes to the variation of large-scale circulation. Thus, predictions are often more skillful when the index is closely linked to atmospheric circulation over a broad region than over a regional and narrow range. It is also revealed that, the subseasonal variations of biases of winds, precipitation, and surface temperature over various monsoon regions are captured by a first mode with seasonally independent biases and a second mode with apparent phase transition of biases during summer. The first mode indicates the dominance of overall weaker-than-observed summer monsoons over major monsoon regions. However, at certain stages of monsoon evolution, these underestimations are regionally offset or intensified by the time evolving biases portrayed by the second mode. This feature may be partially related to factors such as the shifts of subtropical highs and intertropical convergence zones, the reversal of biases of surface temperature over some monsoon regions, and the transition of regional circulation system. The significant geographical differences in bias growth with increasing lead time reflect the distinctions of initial memory capability of the climate system over different monsoon regions.  相似文献   

10.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

11.
We investigate the Madden–Julian Oscillation(MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices — the all-season Real-Time multivariate MJO index(RMM) and outgoing longwave radiation-based MJO index(OMI) — are used to compare the MJOrelated ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 h Pa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies,i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index(RMM) can better characterize the MJOrelated anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.  相似文献   

12.
The boreal summer intraseasonal oscillation (BSISO) has strong convective activity centers in Indian (I), Western North Pacific (WNP), and North American (NA) summer monsoon (SM) regions. The present study attempts to reveal BSISO teleconnection patterns associated with these dominant intraseasonal variability centers. During the active phase of ISM, a zonally elongated band of enhanced convection extends from India via the Bay of Bengal and Philippine Sea to tropical central Pacific with suppressed convection over the eastern Pacific near Mexico. The corresponding extratropical circulation anomalies occur along the waveguides generated by the North African-Asian jet and North Atlantic-North European jet. When the tropical convection strengthens over the WNPSM sector, a distinct great circle-like Rossby wave train emanates from the WNP to the western coast of United States (US) with an eastward shift of enhanced meridional circulation. In the active phase of NASM, large anticyclonic anomalies anchor over the western coast of US and eastern Canada and the global teleconnection pattern is similar to that during a break phase of the ISM. Examination of the evolution of the BSISO teleconnection reveals quasi-stationary patterns with preferred centers of teleconnection located at Europe, Russia, central Asia, East Asia, western US, and eastern US and Canada, respectively. Most centers are embedded in the waveguide along the westerly jet stream, but the centers at Europe and Russia occur to the north of the jet-induced waveguide. Eastward propagation of the ISO teleconnection is evident over the Pacific-North America sector. The rainfall anomalies over the elongated band near the monsoon domain over the Indo-western Pacific sector have an opposite tendency with that over the central and southern China, Mexico and southern US, providing a source of intraseasonal predictability to extratropical regions. The BSISO teleconnection along and to the north of the subtropical jet provides a good indication of the surface sir temperature anomalies in the NH extratropics.  相似文献   

13.
国家气候中心MJO监测预测业务产品研发及应用   总被引:2,自引:1,他引:1       下载免费PDF全文
热带大气低频振荡 (MJO) 和北半球夏季季节内振荡 (BSISO) 对全球范围天气气候事件有重要影响,是次季节-季节 (S2S) 预报最主要的可预报性来源之一。国家气候中心 (BCC) 基于我国完全自主的T639全球分析场数据、风云三号气象卫星射出长波辐射 (OLR) 资料以及BCC第2代大气环流模式系统的实时预报,发展了MJO实时监测预测一体化业务技术,建立了ISV/MJO监测预测业务系统 (IMPRESS1.0),已投入实时业务运行,在全国气象业务系统得到应用。该文着重介绍该系统提供的MJO和BSISO指数监测预测数据和图形产品,并描述了这些业务产品在2015年对MJO典型个例的实时监测预测应用情况。监测分析和预报检验表明,基于我国自主资料的监测结果能够较为准确地表征MJO和BSISO指数的振荡和演变过程,该系统对MJO和BSISO事件分别至少具备16 d和10 d左右的预报技巧。因此,基于IMPRESS1.0的MJO/BSISO监测预测一体化业务产品可为制作延伸期预报提供重要的参考依据。  相似文献   

14.
The present study assesses the forecast skill of the Madden–Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air–sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air–sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high-resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO–TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in the Indian Ocean with a lead time of 2 weeks. However, the high-resolution GFS atmosphere-only model fails to reproduce the November MJO and the genesis of TC05A at 2 weeks’ lead. This result highlights the necessity to get MJO right in order to ensure skillful extended-range TC forecasting.  相似文献   

15.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

16.
The Madden and Julian Oscillation (MJO) is the most prominent mode of intraseasonal variations in the tropical region. It plays an important role in climate variability and has a significant influence on medium-to-extended ranges weather forecasting in the tropics. This study examines the forecast skill of the oscillation in a set of recent dynamical extended range forecasts (DERF) experiments performed by the National Centers for Environmental Prediction (NCEP). The present DERF experiments were done with the reanalysis version of the medium range forecast (MRF) model and include 50-day forecasts, initialized once-a-day (0Z) with reanalyses fields, for the period between 1 January, 1985, and 31 December, 1989. The MRF model shows large mean errors in representing intraseasonal variations of the large-scale circulation, especially over the equatorial eastern Pacific Ocean. A diagnostic analysis has considered the different phases of the MJO and the associated forecast skill of the MRF model. Anomaly correlations on the order of 0.3 to 0.4 indicate that skillful forecasts extend out to 5 to 7 days lead-time. Furthermore, the results show a slight increase in the forecast skill for periods when convective anomalies associated with the MJO are intense. By removing the mean errors, the analysis shows systematic errors in the representation of the MJO with weaker than observed upper level zonal circulations. The examination of the climate run of the MRF model shows the existence of an intraseasonal oscillation, although less intense (50–70%) and with faster (nearly twice as fast) eastward propagation than the observed MJO. The results indicate that the MRF model likely has difficulty maintaining the MJO, which impacts its forecast. A discussion of future work to improve the representation of the MJO in dynamical models and assess its prediction is presented. Received: 28 December 1998 / Accepted: 27 September 1999  相似文献   

17.
Subseasonal variability during the South China Sea summer monsoon onset   总被引:7,自引:5,他引:2  
Analysis of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data for the period 1998–2007 reveals large subseasonal fluctuations in sea surface temperature (SST) of the South China Sea during the summer monsoon onset. These subseasonal SST changes are closely related to surface heat flux anomalies induced by surface wind and cloud changes in association with the summer monsoon onset. The SST changes feed back on the atmosphere by modifying the atmospheric instability. The results suggest that the South China Sea summer monsoon onset involves ocean–atmosphere coupling on subseasonal timescales. While the SST response to surface heat flux changes is quick and dramatic, the time lag between the SST anomalies and the atmospheric convection response varies largely from year to year. The spatial–temporal evolution of subseasonal anomalies indicates that the subseasonal variability affecting the South China Sea summer monsoon onset starts over the equatorial western Pacific, propagates northward to the Philippine Sea, and then moves westward to the South China Sea. The propagation of these subseasonal anomalies is related to the ocean–atmosphere interaction, involving the wind-evaporation and cloud-radiation effects on SST as well as SST impacts on lower-level convergence over the equatorial western Pacific and atmospheric instability over the Philippine Sea and the South China Sea.  相似文献   

18.
齐倩倩  朱跃建  陈静  田华  佟华 《大气科学》2022,46(2):327-345
基于GRAPES(Global and Regional Assimilation Prediction System)全球预报系统(GRAPES-GFS)的2018年9月至2019年8月的分析场和35天预报的试验数据,对该系统延伸期次季节预报进行误差诊断和预报能力分析.结果表明,该系统可描述2018冬季及2019年夏...  相似文献   

19.
Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year-to-year variations in South China Sea summer monsoon onset at up to a three-month lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skillful prediction of Pacific sea surface temperatures associated with El NiÑo and La NiÑa. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by subseasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia.  相似文献   

20.
郝立生  LITim  马宁  梁苏洁  谢均 《大气科学》2020,44(3):639-656
本文基于华北夏季降水资料和热带大气季节内振荡(Madden–Julian Oscillation,简称MJO)指数、NCEP/NCAR(美国国家环境预报中心/美国国家大气研究中心)再分析环流资料,采用多种统计方法分析MJO与2018年华北夏季降水的关系及影响机制。结果表明:(1)MJO与华北夏季降水有密切的联系。虽然MJO不能移到较高纬度直接影响华北夏季降水,但MJO对流区的气旋会在其北侧激发出反气旋环流,这对“气旋—反气旋对”在缓慢东移过程中,处于较高纬度的反气旋会直接影响华北夏季降水。即MJO会间接影响华北夏季降水,表现为当夏季MJO进入5、6位相时,华北地区夏季会出现明显降水过程,但降水强弱与MJO振幅大小有关。(2)影响机制方面。在850 hPa,伴随MJO的“气旋—反气旋对”的东移,它会造成华北夏季偏南风水汽输送加强(对应RMM1)或东南风水汽输送加强(对应RMM2),从而有利于降水过程发生。在500 hPa层,MJO通过中层扰动向中高纬的传播,诱导副热带高压移到朝鲜半岛附近并加强,对西来高空槽形成阻挡作用,有利于华北地区产生上升运动,从而有利于华北夏季降水过程发生。(3)可以用MJO制作华北夏季延伸期降水过程预报。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号