首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
利用金相显微镜、扫描电镜及透射电镜等测试手段研究了挤压温度对固溶态Mg-2.0Zn-0.5Zr-3.0Gd镁合金显微组织的影响。同时,采用浸泡实验和电化学测试等方法研究了合金在模拟体液中的腐蚀行为。结果表明:挤压态合金主要由大的变形晶粒和动态再结晶晶粒组成,析出相由纳米级的棒状(Mg, Zn)3Gd相和颗粒状的Mg2Zn11相组成。挤压温度在340~360 ℃时,合金中动态再结晶晶粒的体积分数随着挤压温度的升高而增加,腐蚀速率随着挤压温度的升高而降低。当挤压温度为360 ℃时,合金发了完全动态再结晶,具有较好的耐腐蚀性,静态腐蚀速率为0.527 mm/y,腐蚀形式为均匀腐蚀。当温度升高至380 ℃时,部分动态再结晶晶粒发生异常长大现象,导致腐蚀速率随着挤压温度的升高而升高。  相似文献   

2.
通过金相显微分析(OM)、扫描电镜观察(SEM)、透射电镜观察(TEM)和拉伸性能测试研究不同时效时间对Mg-2.0Zn-0.5Zr-3.0Gd生物镁合金显微组织及力学性能的影响,通过质量损失和电化学方法研究合金在模拟体液(SBF)中的耐腐蚀性能。结果表明:时效时间为4~20 h时,合金中析出相的尺寸及数量随时效时间的延长而增加,析出相主要以纳米级棒状和颗粒状的(Mg,Zn)3Gd相形式存在,部分棒状析出相与α-Mg基体具有共格界面关系。合金的强度及伸长率随时效时间的延长先升高后降低。在120 h的浸泡实验中,合金的平均腐蚀速率、点蚀孔洞的数量及孔洞尺寸随时效时间的延长而逐渐增大,腐蚀速率随浸泡时间延长呈现出先减小、后增大、再缓慢减小以及最后趋于稳定的过程。  相似文献   

3.
对Mg-1Zn-1Gd镁合金进行了不同温度下的热挤压试验.根据试验结果和分析阐述了不同挤压温度对Mg-1Zn-1Gd合金的组织和力学性能的影响.结果 表明,挤压过程中再结晶受不同位置应变率的影响,挤压后的晶粒尺寸较小.随着挤压温度的升高,第二相粒子逐渐减少,且挤压后的晶粒尺寸先减后增,合金屈服强度和抗拉强度先增后减.当...  相似文献   

4.
孟素各 《热加工工艺》2021,(14):159-162
设计了Gd含量很低的车用Mg-8.5Gd-5.5Zn-2.0Zr-0.2Y镁合金,并对其腐蚀性能进行了测试,研究了固溶温度对合金组织和耐腐蚀性的影响.结果表明:固溶温度高于350℃,会降低第二相组织的热稳定性,抑制晶粒长大的钉扎作用开始降低,引起晶粒尺寸增大.经过固溶处理后的镁合金力学性能均高于铸态的力学性能;当固溶温...  相似文献   

5.
通过光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和万能材料试验机等研究了固溶处理对Mg-2.0Zn-0.4Mn-xAl合金微观组织和性能的影响,借助质量损失实验和电化学实验研究了合金在3.5%NaCl溶液中的耐腐蚀性能。结果表明:合金中第二相的数量及尺寸随着Al含量的增加而增加,第二相组成由纳米级棒状MgZn2相和椭圆状Mg2(Zn, Al)11相(0~4 mass%Al)向Mg17Al12相(6 mass%Al)转变。当Al含量为4.0 mass%时,合金具有较好的综合力学性能和耐蚀性能,其极限抗拉强度、屈服强度及伸长率分别为(180.1±3.1) MPa、(124.7±2.8) MPa和(16.7±1.5)%,在3.5%NaCl溶液中浸泡72 h后,合金的静态腐蚀速率和析氢腐蚀速率分别为(0.822±0.056) mm/y和(0.790±0.045) mm/y。  相似文献   

6.
7.
研究了Gd含量对挤压态Mg-0.5Zr-1.8Zn-x Gd(0~2.5%,质量分数)生物镁合金组织及耐腐蚀性能的影响。结果表明:挤压比为7.7、挤压温度为350℃时,合金发生了完全动态再结晶,其晶粒尺寸随Gd含量的增加先减小,最后趋于稳定。合金中的第二相主要由颗粒状(Mg, Zn)_(3)Gd相和Mg_(2)Zn_(11)相组成,其数量、尺寸及体积分数随Gd含量的增加逐渐增大,同时,纳米级棒状(Mg, Zn)_(3)Gd相与合金基体具有半共格界面关系。Gd含量大于2.0%(质量分数)时,部分未溶第二相以弯曲线条状在合金基体中随机分布,其尺寸及数量随Gd含量的增加逐渐增大。合金的耐腐蚀性能随Gd含量的增加先增强后减弱,Gd含量为1.0%(质量分数)时,合金具有较好的耐腐蚀性能。  相似文献   

8.
研究了不同挤压温度对Mg-2.0Zn-0.3Zr-0.9Y新型镁合金组织和性能的影响。结果表明,降低挤压温度,Mg-2.0Zn-0.3Zr-0.9Y合金的平均晶粒尺寸得到显著细化,合金的屈服强度和抗拉强度得到大幅提高,而延伸率变化不大。随着挤压温度的降低,{10ī2}织构强度不断增强,{0002}基面环形织构强度减弱。Mg-2.0Zn-0.3Zr-0.9Y合金的力学性能不但受到组织平均晶粒大小的影响,还受到织构分布的影响。挤压温度为330℃时可获得细小的组织和优良的力学性能,平均晶粒尺寸达到1.76μm,合金抗拉强度达到323MPa,屈服强度为309MPa,延伸率为21.92%。  相似文献   

9.
在较高的熔炼温度(780±5 ℃)下,研究了Gd含量对铸态Mg-0.5Zr-1.8Zn-xGd生物镁合金组织、力学性能及耐腐蚀性能的影响。结果表明:Gd含量在0-2.5wt%时,合金的晶粒尺寸随Gd含量的增加逐渐减小,未含Gd合金主要由α-Mg和少量分散的微米级Zr颗粒组成,而含Gd合金则主要由α-Mg和不同形貌的(Mg, Zn)3Gd相组成。合金的力学性能随Gd含量的增加先升高后降低,Gd含量为1.5wt%时,合金具有较好的力学性能。与此同时,合金的耐腐蚀性能也随Gd含量的增加先增强后减弱,Gd含量为1.5wt%时,分布均匀且尺寸细小的网状第二相使其具有较好的耐腐蚀性能,在120 h的浸泡实验中,静态腐蚀速率为0.801±0.04 mm/a,腐蚀形貌较为均匀。  相似文献   

10.
采用金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)研究固溶处理温度对Mg-2.0Zn-0.5Zr-3.0Gd(质量分数,%)生物镁合金显微组织的影响,通过失重、析氢和电化学方法研究合金在模拟体液(SBF)中的耐腐蚀性能。结果表明:铸态合金中,第二相(Mg,Zn)3Gd在合金基体中呈网状分布。固溶处理温度在460~500℃时,合金的晶粒尺寸随温度的升高而逐渐增大,温度为480℃时,没有溶入基体的(Mg,Zn)3Gd相以颗粒状或长条状的形式存在于基体中,部分颗粒与α-Mg基体具有共格关系。随着固溶处理温度的升高,合金的腐蚀速率先减小后增大,固溶处理温度在480℃时,合金的耐腐蚀性能比铸态合金的有了较大的提高。在120 h的浸泡实验中,合金的腐蚀速率在最后24 h时逐渐趋于稳定。  相似文献   

11.
采用拉伸性能和导电率测试、光学显微镜(OM)、扫描电镜(SEM)、差热分析(DSC)、透射电镜(TEM)研究了固溶温度和时间对Al-8.8Zn-2.0Mg-2.1Cu-0.1Zr-0.1Ce合金板材微观组织、拉伸性能及断口形貌的影响。结果表明,试验合金适宜的固溶工艺为470 ℃×60 min,使冷轧态金属间化合物充分固溶。在此工艺下合金时效后的抗拉强度、屈服强度(以Rp0.2计)以及伸长率分别为646 MPa、581 MPa和14.5%。TEM观察发现合金板材固溶时效后晶内强化相η′仅为2~5 nm,并且晶界析出相η呈现断续分布。此外,合金拉伸断面韧窝中大量弥散分布的AlCuCeZn粒子有利于合金塑性的明显提升。  相似文献   

12.
利用OM、SEM、TEM等手段研究了固溶处理对Mg-Zn-Gd-Y-Zr合金组织的影响,并对合金的耐腐蚀性能及力学性能进行了测试。结果表明:固溶处理有效改善铸态合金的组织不均匀性,在460~510℃温度范围固溶处理后,合金的晶粒尺寸随温度升高而逐渐增大,第二相尺寸减小并趋于球形。当固溶温度高于490℃时,有少量Zn_2Zr_3相析出,且随温度的升高,析出相有增多及粗化趋势。在490℃固溶8 h后,合金的组织均匀,耐蚀性相对较好,腐蚀较为均匀,失重腐蚀速率为0.472±0.048 mm/a,抗拉强度、屈服强度及延伸率分别为196.2±3.5 MPa、111.1±6.4 MPa和(18.9±1.3)%。试验研究了合金腐蚀后的力学性能,结果表明:490℃固溶8 h试样在模拟体液中浸泡后,力学性能在1~7 d内急剧下降,7~14 d下降较为缓慢,随浸泡时间的延长断裂形式从准解理断裂转变为脆性断裂。  相似文献   

13.
采用扫描电镜(SEM)以及光学显微镜(OM)观察了Mg-1Zn-0.3Zr-2Gd-0.3Sr合金的微观组织。用X射线衍射仪(XRD)分析了合金的偏析相,并用浸泡测试和电化学试验研究了合金的腐蚀性能。结果表明:铸态合金的偏析相最多,平均腐蚀速率为1.102 mm/a;随着固溶温度的升高,合金的偏析相逐渐减少,组织逐渐变得较为均匀,平均腐蚀速率基本逐渐降低;经510℃固溶处理的合金的平均腐蚀速率最小为0.63 mm/a,比铸态合金的平均腐蚀速率降低了42.8%。  相似文献   

14.
研究挤压比及时效处理对Mg-6Zn-1Zr-1.5Y合金组织及力学性能的影响规律,初步分析了该合金在形变热处理过程中的强化机制。结果表明:随着挤压比增加,其延伸率逐渐升高,而其强度则先升高后下降;时效处理后,挤压比λ=10的棒材的强度和延伸率都有所下降,λ=13的棒材强度和延伸率都有所升高,λ=25的棒材的强度提高而延伸率降低。该合金的主要强化机制包括:细晶强化,加工硬化和时效强化;合金热挤压后的性能取决于细晶强化和加工硬化的交互作用,时效后的性能取决于时效强化与加工硬化的交互作用。  相似文献   

15.
Ca和Gd对压铸Mg-6Gd-3Y-0.5Zr合金组织及性能的影响   总被引:1,自引:1,他引:0  
王峰  王志  林立  刘正 《铸造》2009,58(10)
在冷室压铸机上制备了Mg-6Gd-3Y-0.5Zr(GW63K)、Mg-8Gd-3Y-0.5Zr(GW83K)和Mg-6Gd-3Y-0.3Ca-0.5Zr(GWC630K)合金.通过光学显微镜、扫描电镜、X射线衍射及力学性能测试等研究了Ca、Gd对GW63K合金组织及力学性能的影响.结果表明:在GW63K合金基础上,添加Ca或Gd均可以使合金组织得到细化,并使得晶界上稀土相的数量明显增加.Ca主要溶于基体中,使合金中Gd、Y稀土元素更多地溶入基体,并使稀土相以短棒状或粒状分布于晶界.Gd主要分布于晶界上的稀土相中.Ca的加入有利于提高合金室温拉伸力学性能,而Gd的加入更有助于提高合金的高温强度.  相似文献   

16.
利用光学显微镜、扫描电镜及力学性能测试等分析手段研究了不同热处理条件对Mg-5Gd-0.5Sc-Mn合金的微观组织和力学性能的影响.结果表明,Mg-5Gd-0.5Sc-Mn合金具有良好的室温性能及高温稳定性.比较T5和T6两种热处理工艺发现:挤压态合金在200 ℃经过不同时间的时效,T5态较T6态的峰值时效硬度高,且T5态到达峰值时效的时间比T6态的短;合金T5态的室温抗拉强度可以达到216MPa,200 ℃达到191 MPa,均高于T6态的191和186MPa;T5态室温及高温条件下的断裂模式表现为准解理及微孔聚集的塑性断裂,而T6态室温及高温条件下分别为解理和准解理的脆性断裂.  相似文献   

17.
研究了稀土元素Y含量的不同对Mg-5Al-1Sr-2Ca合金微观组织和耐腐蚀性的影响。使用对掺法制备了Mg-5Al-1Sr-2Ca-XY(X=0,0.5,0.7,1.0;质量分数,%)合金。采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)分析了该合金。结果表明,随着Y的加入,合金中出现Al2Y新相,合金晶粒得到细化。当Y含量为0.7%时,合金晶粒最细。但是当Y含量大于0.7%时,晶粒变大,并且不规则。通过静态失重测试和极化曲线法研究了合金的耐腐蚀性。发现随着Y的添加提高了合金的平衡电位和腐蚀电位,耐腐蚀性提高。在本实验范围内,当Y含量为0.7%时,合金的耐腐蚀性最好。  相似文献   

18.
研究了浇注温度和固溶温度对挤压铸造Al-6.8Zn-2.5Mg-2.0Cu合金组织和性能的影响。结果表明,与金属型重力铸造相比,挤压铸造可以显著细化合金的微观组织,减少铸件缩松缺陷,从而提高其力学性能。在金属型重力铸造下,初生α-Al相晶粒尺寸随着浇注温度的增加而增大。在挤压力为60MPa时,随浇注温度的增加,α-Al相晶粒尺寸先减小而后增加。在浇注温度为720℃时,凝固组织的二次枝晶间距最小,约为26.3μm,铸件的抗拉强度和伸长率分别为310 MPa和4.0%。铸件经过470℃固溶10h+130℃时效24h热处理后,抗拉强度和伸长率分别达到590MPa和4.7%,获得了良好的强韧化效果。  相似文献   

19.
采用光学显微镜及透射电镜研究了Mg-5.5Zn-1.7Nd-0.7Cd-0.5Zr镁合金在不同挤压变形条件下的组织和性能。结果表明,在一定的挤压条件下,当挤压温度降低或挤压比增大,晶粒变细小,合金的抗拉强度和屈服强度提高;在温度为340℃,挤压比为16时,合金抗拉强度为334MPa,屈服强度为300MPa,伸长率为13%,力学性能优良,平均晶粒直径为7μm。  相似文献   

20.
研究挤压温度对铸态Mg-2.0Zn-0.5Zr-3.0Gd生物镁合金组织、力学性能及耐腐蚀性能的影响。结果表明:挤压温度在330~350℃时,动态再结晶的体积分数随挤压温度的升高而增加;在350~370℃时,动态再结晶的体积分数随温度的升高而降低。挤压态合金的析出相主要由纳米级的棒状(Mg, Zn)_3Gd相和新析出的颗粒状Mg_2Zn_(11)相组成。合金的力学性能与动态再结晶晶粒的体积分数成正比关系。挤压温度为350℃时,合金的抗拉强度、屈服强度及伸长率分别为(247±3) MPa、(214±3) MPa和(26.7±1.1)%。随着挤压温度的升高,合金的腐蚀速率先减小后增大,挤压温度为350℃时,合金的静态腐蚀速率及析氢腐蚀速率分别为0.614 mm/a和0.598 mm/a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号