首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 144 毫秒
1.
利用自洽线性场理论,考虑电子的三维扰动,分析了环形相对论电子注在填充背景等离子体的介质筒慢波波导产生的切伦可夫辐射,其环形电子注对主波互作用的作用完全要用一跳变条件来描述,导出了其色散方程和波波互作用的同步条件,求得了是子注产生的波增长率,分析了背景等离子体密度和电子注半径对波增长率的影响。  相似文献   

2.
该文利用线性理论,对相对论环形电子注与环形等离子体互作用产生微波辐射进行了研究。在考虑有限磁场的基础上,利用匹配场法求得色散方程。重点分析了等离子体密度、厚度,外加磁场对等离子体切伦可夫脉塞注-波互作用的影响,并计算了各参量变化时的波增长率以及色散关系。  相似文献   

3.
利用线性场理论,对填充环形等离子体的介质切伦可夫脉塞进行了详尽的分析;讨论了薄环形相对论电子注包围环形等离子体、处于环形等离子体之间和位于环形等离子体之内,这三种情况下的注波互作用,分别导出了其色散方程;并对色散方程直接进行了数值求解;求得了系统的截止频率、工作频率和波增长率,讨论了有关参数对它们的影响。  相似文献   

4.
在介质切伦可夫脉塞中加入背景等离子体可有效地提高器件的效率和微波输出功率。本文通过求解束-等离子体、内衬介质的波导色散方程、重点分析了纵向均匀磁场对等离子体介质切伦可夫脉塞注波互作用的影响,给出了磁场、等离子体密度、介质参量等对线性空间增长率和能量比的影响曲线。  相似文献   

5.
采用理论分析和粒子模拟方法研究同轴内盘荷慢波结构注波互作用的物理机理。采用场匹配理论得到色散方程,通过数值计算得到了准TEM模的色散曲线及不同电子注电压下注波互作用的增长率;采用粒子模拟技术研究了注波互作用的物理过程。结果表明,随着电子注电压的不断增加,器件的工作状态由返波振荡转换到行波振荡;通过对辐射谱特性进行分析表明粒子模拟结果与理论计算结果基本一致。  相似文献   

6.
在介质切伦可夫脉塞中加入背景等离子体可有效地提高器件的效率和微波输出功率。本文通过求解束-等离子体、内衬介质的波导色散方程,重点分析了纵向均匀磁场对等离子体介质切伦可夫脉塞注波互作用的影响,给出了磁场、等离子体密度、介质参量等对线性空间增长率和能量比的影响曲线。  相似文献   

7.
采用理论分析和粒子模拟相结合的方法,对连续电子注通过平板矩形光栅产生毫米波段史密斯-帕塞尔(SP)超辐射机理进行了研究.研究结果表明:选择恰当的电子注与光栅尺寸参数,光栅表面慢波将与电子注互作用,使电子注产生群聚,群聚的电子束团将在光栅表面产生史密斯-帕塞尔超辐射,其辐射频率为电子注与光栅表面慢波互作用同步点频率的整数倍,其辐射角度方向与史密斯-帕塞尔公式所预期的基本一致, 表面慢波由于光栅的有限长度也能在其端头以一定的形式辐射出去.  相似文献   

8.
本文以等离子体动力论为基础讨论存在纵向外电场时磁化等离子体的哨声波。由于外电场的影响,等离子体偏离平衡态。取电子稳态分布函数为局域的麦克斯韦分布,用沿无扰轨道积分方法求出系统的介电张量,并分别用介电张量的厄米部份和反厄米部份分析哨声的色散关系和增长率。对于波矢在以电场方向为轴顶角为2c锥角范围内的哨声,外电场的作用使波增长;波矢在此锥角范围之外,外电场的作用使其衰减。波的增长率随频率增高而增大,随波矢倾角增大而减小。ee时,波矢与外电场平行对应的最大增长率与等离子体密度成正比,与磁场强度成反比。文中还给出了以电离层F层作背景参数的数值计算结果。  相似文献   

9.
本文在考虑等离子体厚度效应的情况上,详尽地推导了充填圆环状等离子体的圓柱波导中TM模慢电磁波的色散方程;利用相对论空间电荷波理论,导出了相对论电子注在轴向磁场引导下沿等离子体内表面传输时的空间电荷波方程;求得了电子注和慢空间电荷波相互作用的线性增益和频率漂移;讨论了等离子体厚度、密度对色散特性和互作用增益的影响。  相似文献   

10.
陈希  刘盛纲 《电子学报》2000,28(1):134-135
本文导出了无外磁场电子注在等离子体约束下其上传播的空间电荷波波动方程,详细讨论了该条件下的波特性,并对等离子 频率降低因子进行了分析。研究了离子体填充状况空间电荷波性质影响甚大,选择等离子体填充因子对空间电荷波性质进行适当的控制。  相似文献   

11.
An axial relativistic electron beam passing through a slow wave structure is unstable to an electromagnetic perturbation whose phase velocity equals the velocity of the beam. This phenomenon of Cherenkov emission is the basis of all traveling wave tubes. In this paper an excitation of Cherenkov radiation by a thin annular relativistic electron beam in a plasma-filled dielectric-lined waveguide is analysed by use of the self-consistent linear theory. The effect of the thin annular electron beam on the beam-wave interaction is completely described by a jump condition. The dispersion equation and the simultaneous condition of the beam-wave interaction are derived. Finally, the growth rate of the wave is obtained, and the effect of the background plasma density and the electron beam radius on the growth rate of the wave are presented.  相似文献   

12.
A theoretical discussion is given for the two-dimensional Raman-type free-electron laser composed of a hollow relativistic electron beam of arbitrary thickness contained in a parallel plate waveguide and an array of permanent magnets for the pumping source. Under the influence of the magnetostatic field pump, the coupling between the scattered wave of the even TE mode (positive-energy wave) and the electron plasma wave of the odd TM mode (negative-energy wave) is investigated in detail. With the aid of numerical illustrations, the electron plasma wave with odd symmetry is found to be split into two modes: one mode is dominant for a thick beam and the other mode dominant for a thin beam. For the case where the scattered wave interacts with the electron plasma wave of the latter mode, an optimum beam thickness is obtained for which the growth rate becomes maximum. The optimum beam thickness is found to be comparable with the wavelength of the scattered wave and yet considerably greater than the reactive skin depth of the electron beam. In addition, the efficiency for energy conversion is found to be greatly improved by utilizing a hollow beam instead of a solid beam.  相似文献   

13.
The Raman-type free-electron laser consists of a relativistic electron beam contained in a dielectric-induced parallel plate waveguide and an array of permanent magnets for the wiggler. Under the influence of the periodic magnetostatic field, the coupling between the scattered electromagnetic wave of the TE mode (positive-energy wave) and the electron plasma wave of the TM mode (negative-energy wave) is investigated in detail. The following results are obtained. First, when a dielectric sheet is loaded on the waveguide, the maximum growth rate and the oscillation frequency can be greater than those for the vacuum Raman-type free-electron laser. Second, by choosing proper values for the relative permittivity of the dielectric sheet and the ratio of the beam guide, the beam energy can be greatly lowered without degrading the oscillation characteristics. Third, the growth rate decays exponentially with the oscillation frequency kept almost constant as the beam-dielectric gap increases  相似文献   

14.
On the basis of the reference [1], excitation of Cherenkov radiation with arbitrary azimuthal mode number by a thin annular relativistic electron beam in a plasma-filled dielectric-lined slow-wave waveguide is studied in this paper. A determinantal dispersion equation is obtained. This general dispersion equation is valid for arbitrary azimuthal mode number, and the growth rate of the wave is derived from it. Finally, the effects of the background plasma density on the dispersion relation, the background plasma density and the electron beam radius on the growth rate of the wave are presented. Formulas and results offerd in this paper are general, and are of particular value of reference to the beam-wave interaction in azimuthally unsymmetrical slow-wave waveguide.  相似文献   

15.
The dispersion characteristics of plasma–loaded free-electron laser has been analyzed using linear fluid model. The device under consideration consists of the cylindrical metallic waveguide, completely filled with background plasma and a relativistic electron beam which passes through a helical wiggler magnetic field. The result predicts that reasonable plasma density tends to improve the growth rate of the low-frequency optical wave of FEL and causes an shiftup in the operating frequency, However it has little effect on the growth rate of the high-frequency wave. In the plasma–loaded FEL, for the FEL oscillator, it may be tuned by varying the plasma density; and for the FEL amplifier, the wider frequency bandwidth is gained. A critical density n c p for the background plasma density is found.  相似文献   

16.
本文研究圆柱电子束通过矩形波导和线性摆动器时产生相干辐射的特性。用线性化弗拉索夫-麦克斯韦方程分析了因对自洽的电子束平衡态引起扰动产生的不稳定性。导出了TMmn模的色散方程并数值计算了辐射频率和增长率与电子束能量、轴向磁场、摆动器强度和波长以及电子束半径的关系。  相似文献   

17.
本文研究了电磁波泵浦的自由电子激光器。从跃变磁场结构出来的大半径迴旋环形电子束通过圆柱形波导与圆柱形波导的TE11模入射电磁波相作用。利用电子束的弗拉索夫分布函数理论和三维波导模的波动方程求得在康普顿区域中的散射波色散关系。通过数值分析,讨论了轴向引导磁场,电子束能量,电子迴旋比和电子束环的径向位置等与散射波频率和增长率的关系。  相似文献   

18.
Injection of background plasma into the beam-wave interaction region can greatly enhance the beam-wave interaction efficiency and the microwave output power of the device. In this paper, a new type of plasma-filled slow-wave structure, i.e., plasma-filled, dielectric-loaded coaxial cylindrical waveguide with a dielectric ring enclosing tightly the inner conductor, is developed. The Cherenkov radiation excited by the beam-wave interaction in the slow-wave structure is examined by use of the self-consistent linear field theory. The dispersion equation and the synchronized condition of the beam-wave interaction are derived. It's clearly shown that the Cherenkov radiation excited by the beam-wave interaction results from the coupling between the slow electromagnetic wave, TM-modes, propagated along the slow-wave structure and the negative-energy space-charge wave propagated along the relativistic electron beam. And the wave growth rate is solved, and the beam-wave energy exchange in the presence of the background plasma is discussed. Finally, the effects of the background plasma density on the dispersion characteristics, the distribution of the longitudinal fluctuating electric field, the wave growth rate and the beam-wave energy exchange are calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号