首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary fragmentation of two limestones was studied in a lab-scale bubbling fluidized bed under simulated oxy-firing conditions and, for comparison, under traditional air-firing conditions. The influence of bed temperature, particle size and simultaneous occurrence of sulphation reaction was tested. Additional experiments in a heated strip apparatus were performed to determine if primary fragmentation occurred under high heating rate conditions, but in the absence of particle collisions.Results of the experiments show that only limited fragmentation occurred to both limestones tested under all operating conditions. Under oxy-firing conditions primary fragmentation was significantly reduced with respect to air-fired operation, most likely because of the absence of limestone calcination under high CO2 atmospheres. Thermal shock upon limestone injection in the hot bed appears not to be able to induce significant particle fragmentation by its own.Particle size, bed temperature and simultaneous occurrence of sulphation reaction were found not to influence significantly the limestone primary fragmentation extent under both oxy-firing and air-firing conditions. On the contrary, the limestone type was found to be a more important variable with respect to the fragmentation tendency.  相似文献   

2.
Sulphation of two limestones in a fluidized bed combustor has been investigated. One limestone (coarse‐grained) was characterized by a significant population of relatively large pores after calcination; the other (fine‐grained) presented a finer and fairly unimodal pore size distribution. Differences in the microstructure were reflected by different thickness of the sulphate shell formed upon sulphation and ultimate calcium conversion degree. Particle attrition/fragmentation were fairly small under moderately bubbling fluidization conditions. Fragmentation upon impact was significant. The fine‐grained limestone, characterized by a thinner sulphate shell, was more susceptible to fragmentation than the other. Particle fragmentation discloses unreacted CaO enabling secondary sulphation of exhausted particles.  相似文献   

3.
There is increasing interest in CO2 looping cycles that involve the repeated calcination and carbonation of the sorbent as a way to capture CO2 from flue gases during the carbonation step and the generation of a pure stream of CO2 in the oxyfired calcination step. In particular, attrition of the material in these interconnected fluidized bed reactors is a problem of general concern. Attrition of limestone derived materials has been studied in fluidized bed systems by numerous authors. In this work, we have investigated the attrition of two limestones used in a system of two interconnected circulating fluidized bed reactors operating in continuous mode as carbonation and calciner reactors. We observed a rapid initial attrition of both limestones during the calcination step which was then followed by a highly stable period (up to 140 h of added circulation for one of the limestones) during which particle size changes were negligible. This is consistent with previous observations of attrition in other systems that employ these materials. However, a comparison of the attrition model constants with the data reported in the literature showed the two limestones to be particularly fragile during the initial calcination and the first few hours of circulation. Thus, a careful choice of limestone based on its attrition properties must be taken into account in designing future carbonate looping systems.  相似文献   

4.
Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO2 atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore, a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.  相似文献   

5.
Limestone particle attrition was investigated in a small circulating fluidized bed reactor at temperatures from 25 to 850 °C, 1 atm pressure and superficial gas velocities from 4.8 to 6.2 m/s. The effects of operating time, superficial gas velocity and temperature were studied with fresh limestone. No calcination or sulfation occurred at temperatures ?580 °C, whereas calcination and sulfation affected attrition at 850 °C. Increasing the temperature (while maintaining the same superficial gas velocity) reduced attrition if there was negligible calcination. Attrition was high initially, but after ∼24 h, the rate of mass change became constant. The ratio of initial mean particle diameter to that at later times increased linearly with time and with (Ug − Umf)2, while decreasing exponentially with temperature, with an activation energy for fresh limestone of −4.3 kJ/mol. The attrition followed Rittinger’s surface theory [Beke B. Comminution. Budapest: Akademiai Kiado, 1964; Ray YC, Jiang TS, Wen CY. Particle attrition phenomena in a fluidized bed. Powder Technol 1987a; 49:193-206]. The change of surface area of limestone particles was proportional to the total excess kinetic energy consumed and to the total attrition time, whereas the change of surface area decreased exponentially with increasing temperature. At 850 °C, the attrition rate of calcined lime was highest, whereas the attrition rate was lowest for sulfated particles. When online impact attrition was introduced, the attrition rate was about an order of magnitude higher than without impacts.  相似文献   

6.
The CO2 capture from flue gases by a small fluidized bed reactor was experimentally investigated with limestone. The results showed that CO2 in flue gases could be captured by limestone with high efficiency, but the CO2 capture capacity of limestone decayed with the increasing of carbonation/calcination cycles. From a practical point of view, coal may be required to provide the heat for CaCO3 calcination, resulting in some potential effect on the sorbent capacity of CO2 capture. Experiment results indicated that the variation in the capacity of CO2 capture by using a limestone/coal ash mixture with a cyclic number was qualitatively similar to the variation of the capacity of CO2 capture using limestone only. Cyclic stability of limestone only undergoing the kinetically controlled stage in the carbonation process had negligible difference with that of the limestone undergoing both the kinetically controlled stage and the product layer diffusion controlled stage. Based on the experimental data, a model for the high-velocity fluidized bed carbonator that consists of a dense bed zone and a riser zone was developed. The model predicted that high CO2 capture efficiencies (>80%) were achievable for a range of reasonable operating conditions by the high-velocity fluidized bed carbonator in a continuous carbonation and calcination system.  相似文献   

7.
Coprecipitation and hydrolysis of CaO have been employed to produce Ca‐based synthetic sorbents suitable for capturing CO2 in a fluidized bed. Their composition, CO2 uptake, volume in small pores (2–200 nm) and resistance to attrition were measured and compared to those of limestone and dolomite. Sorbents produced by hydrolysis showed the highest uptake and resistance to attrition. After 20 cycles of carbonation and calcination, two sorbents exceeded the uptake of both limestone and dolomite, when subjected to the same regimes of reaction. A sorbent's uptake of CO2 was shown to be determined by the volume in pores narrower than ~200 nm.  相似文献   

8.
The performance of synthetic ettringite as a sorbent in fluidized bed desulphurization has been assessed and compared with that of a commercial limestone. Experiments have been carried out in a bench scale fluidized bed reactor under simulated desulphurizing (steadily oxidizing) combustion conditions. Sorbent performance has been characterized in terms of desulphurization rate, maximum sulphur uptake and attrition propensity. Fluidized bed sulphation experiments have been complemented by microstructural characterization of solid samples, accomplished via X-ray diffraction analysis, scanning electron microscopy and sulphur mapping of cross-sections of particles embedded in epoxy resin.

Experimental results show that both the rate and the maximum extent of sulphur uptake by ettringite significantly exceed those of the limestone. Maximum degree of free calcium utilization is 0.58 for ettringite compared with 0.27 for the limestone. Sulphation tests also indicate that attrition propensity of ettringite is larger than that correspondingly observed for the limestone. Microstructural characterization indicates that sulphation of ettringite takes place evenly throughout the particle cross-section, whereas sulphation of limestone mostly conforms to a core-shell pattern.

Along a parallel pathway, the rate and yield of ettringite formation by hydration of fly ash from a utility fluidized bed boiler have been assessed. Formation of ettringite in these experiments appears to be quantitative upon curing of ash at 70 °C for times up to 4 days.  相似文献   


9.
Flue gas desulfurization by means of limestone injection under simulated fluidized bed oxyfiring conditions was investigated, with a particular focus on particle attrition and fragmentation phenomena. An experimental protocol was applied, based on the use of complementary techniques that had been previously developed for the characterization of attrition of sorbents in air-blown atmospheric fluidized bed combustors. The extent and pattern of limestone attrition by surface wear in the dense phase of a fluidized bed were assessed in bench scale fluidized bed experiments under simulated oxyfiring conditions. Sorbent samples generated during the oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a particle impactor. The experimental results were compared with those previously obtained with the same limestone under air-blown atmospheric fluidized bed combustion conditions. The profound differences in the attrition and fragmentation extents and patterns associated with oxyfiring as compared to air-blown atmospheric combustion and the role played by the different attrition/fragmentation paths were highlighted. In particular, it was noted that attrition could effectively enhance particle sulfation under oxyfiring conditions by continuously disclosing unconverted calcium to the sulfur-bearing atmosphere.  相似文献   

10.
The extent of attrition associated with impact loading was studied for five different limestones pre-processed in fluidized bed under different reaction conditions. The experimental procedure was based on the measurement of the amount and the particle size distribution of the debris generated upon impact of sorbent samples against a target at velocities between 10 and 45 m/s. The effect of calcination, sulfation and calcination/re-carbonation on impact damage was assessed. Fragmentation by impact loading of the limestones was significant and increased with the impact velocity. Lime samples displayed the largest propensity to undergo impact damage, followed by sulfated, re-carbonated and raw limestones. Fragmentation of the sulfated samples followed a pattern typical of the failure of brittle materials. On the other hand, the behaviour of lime samples better conformed to a disintegration failure mode, with extensive generation of very fine fragments. Raw limestone and re-carbonated lime samples followed either of the two patterns depending on the sorbent nature. The extent of particle fragmentation increased after multiple impacts, but the incremental amount of fragments generated upon one impact decreased with the number of successive impacts.  相似文献   

11.
A mathematical model of SO2 capture by uncalcined limestone particles with solid attrition under pressurized fluidized bed combustion conditions was developed based on the shrinking unreacted-core model. Since the thickness of the product layer is sufficiently much smaller than the particle size, a flat surface model was employed. The difference in SO2 capture behavior between continuous solid attrition and intermittent attrition was investigated. The reaction rate for intermittent solid attrition was found to be lower than that for continuous attrition mode under low SO2 concentration conditions. A simple mathematical expression to calculate reaction rate of SO2 capture per unit external surface area of limestone is proposed.The present simplified mathematical model of SO2 capture by single limestone particle under periodical attrition conditions was applied to the analysis of a large-scale pressurized fluidized bed combustor. By giving the period of attrition as a parameter, the experimental results agreed well with the model results. From the vertical concentration profile of SO2 concentration, the emission of SO2 was found to be governed by the balance between SO2 formation rate from char and SO2 capture by limestone at the upper surface of the dense bed. A simplified expression to estimate SO2 emission from pressurized fluidized bed combustors was proposed.  相似文献   

12.
The calcination process may influence subsequent fragmentation, sintering and swelling when CaO derived from limestone acts as a CO2 or SO2-sorbent in combustion, gasification and reforming. Sorbent properties are affected by CO2 partial pressure, total pressure, temperature, heating rate, impurities and sample size. In this study, the effect of calcination heating rate was investigated based on an electrically heated platinum foil. The effects of heating rate (up to 800 °C/s), calcination temperature (700-950 °C), particle size (90-180 μm) and sweep gas velocity were investigated. Higher initial heating rates led to lower extents of limestone calcination, but the extents of carbonation of the resulting CaO were similar to each other. Calcium utilization declined markedly during carbonation or sulphation of CaO after calcination by rapid heating. Experimental results show that carbonation and calcium utilization were most effective for carbonation temperatures between 503 and 607 °C. Increasing the extent of calcination is not the best way to improve overall calcium utilization due to the vast increase in energy consumption.  相似文献   

13.
为了高效回收利用废弃石灰石资源,对粒径为0.5~1 mm的石灰石进行了静态煅烧和流态化煅烧实验,比较了其产物活性度的差别,探索流态化煅烧制备高活性度石灰的可行性。实验结果表明:流态化煅烧过程中煅烧时间、煅烧温度对产物活性都有影响。随着温度的升高,得到最佳产物活性的煅烧时间会缩短,在此时间之后,继续煅烧产物活性会下降;相比静态煅烧,流态化煅烧不仅提高了石灰石分解的速率,也提高了产物烧结的速率,大幅度缩短了煅烧时间,同时能够在短时间内得到高活性的石灰。在本实验中,石灰石在1 050 ℃下流化煅烧3 min,得到的产物活性度为338 mL;流态化煅烧过程中,煅烧温度越高,产物活性度对煅烧时间的变化越敏感。  相似文献   

14.
Fabrizio Scala 《Fuel》2010,89(4):827-832
Attrition/fragmentation of limestone under simulated fluidized bed oxyfiring conditions was investigated by means of an experimental protocol that had been previously developed for characterization of attrition/fragmentation of sorbents in air-blown atmospheric fluidized bed combustors. The protocol was based on the use of different and mutually complementary techniques. The extent and pattern of attrition by surface wear in the dense phase of a fluidized bed were assessed in experiments carried out with a bench scale fluidized bed combustor under simulated oxyfiring conditions. Sorbent samples generated during simulated oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a purposely designed particle impactor. Results showed that under calcination-hindered conditions attrition and fragmentation patterns are much different from those occurring under air-blown atmospheric combustion conditions. Noteworthy, attrition/fragmentation enhanced particle sulfation by continuously regenerating the exposed particle surface.  相似文献   

15.
In both pressurized and oxygen-enriched fluidized bed combustion the partial pressure of CO2 in the reactor becomes high, which affects SO2 capture by limestone. Both of these technologies are also applicable to decreasing greenhouse gas emissions; the first one by increasing the efficiency of electric energy production and the latter by enabling capture of carbon dioxide for storage.Attrition increases the reaction rate by removing the sulphated layer on the particle, thus reducing the diffusion resistance. In the well-known solution for the shrinking core model the reaction time can be presented as the sum of the contributions of the kinetics and diffusion. It is shown that the effect of attrition can be expressed as an auxiliary term in this expression. A method to extract the diffusivity of the product layer from the SO2 response in a bench-scale fluidized bed test using a limestone sample with a wide particle size distribution is presented. Based on a population balance model, a method to estimate the particle-size-dependent attrition rate from measured particle size distributions of the feed and bed material is illustrated for a 71-MWe pressurized power plant. In addition attrition and its effect on the optimization of the limestone particle size for sulphur capture in oxygen-enriched combustion are discussed.  相似文献   

16.
Sulphur capture by calcium-based sorbents is a process highly dependent on the temperature and CO2 concentration. In oxy-fuel combustion in fluidised beds (FB), CO2 concentration in the flue gas may be enriched up to 95%. Under so high CO2 concentration, different from that in conventional coal combustion with air, the calcination and sulphation behaviour of the sorbent must be defined to determine the optimum operating temperature in the FB combustors.In this work, the SO2 retention capacity of two different limestones was tested by thermogravimetric analysis at typical oxy-fuel conditions in FB combustors. The effect of the main operating variables affecting calcination and sulphation reactions, like CO2 and SO2 concentrations, temperature, and sorbent particle size, was analysed.It was observed a clear difference in the sulphation conversion reached by the sorbent whether the sulphation takes place under indirect or direct sulphation, being much higher under indirect sulphation. But, in spite of this difference, for a given condition and temperature, the CO2 concentration did not affect to the sulphation conversion, being its major effect to delay the CaCO3 decomposition to a higher temperature.For the typical operating conditions and sorbent particle sizes used in oxy-fuel FB combustors, the maximum sorbent sulphation conversions were reached at temperatures of about 900 °C. At these conditions, limestone sulphation took place in two steps. The first one was controlled by diffusion through porous system of the particles until pore plugging, and the second controlled by the diffusion through product layer. As a consequence, the maximum sulphation conversion increased with decreasing the particle size and increasing the SO2 concentration.  相似文献   

17.
A possibility to carry out sorption-enhanced gasification (SEG) is represented by its integration with the calcium looping concept in dual interconnected fluidized beds (DIFB). This article is focused on the sorbent CO2 uptake performance and attrition/fragmentation tendency when operating conditions simulating those of a DIFB-SEG process are adopted. Experiments were carried out on a commercial Italian limestone in a laboratory-scale DIFB reactor. Carbonation was carried out in a range of test conditions, including variable temperature (600–700°C) and absence/presence of steam (10% by volume); CO2 concentration was set at 10% by volume. The characterization is extended by investigating the behavior of preprocessed DIFB-SEG samples on impact fragmentation tests, conducted in an ex situ apparatus. Tests were carried out for impact velocities in the range 17–45 m/s. Results were discussed considering both the impact velocity value and the operating conditions under which the sample was preprocessed in the fluidized bed.  相似文献   

18.
Mechanical degradation of the solid particles used in sorption-enhanced steam methane reforming (SE-SMR) was investigated in a gas jet attrition apparatus. The performance of a dolomite, a limestone and a commercial reforming catalyst were compared based on the air jet attrition index (AJI). The dolomite showed the poorest resistance to attrition, likely due to the extra pore volume caused by calcination of MgCO3. The degree of loss of fines from the catalyst was significant, pointing to the need to develop catalysts suited to fluidized bed operation. Co-fluidization of the harder catalyst and the dolomite did not lead to additional attrition of the dolomite.  相似文献   

19.
武卫芳  赵长遂  李庆钊 《化工学报》2010,61(5):1226-1232
研究了醋酸溶液调质对石灰石在O2/CO2气氛下煅烧/硫化特性的影响,并结合氮吸附法、压汞法和XRD技术进行了分析。结果表明,与原石灰石相比,调质石灰石在煅烧/硫化过程中表现出更高的钙转化率,XRD图谱及其相定量分析证明了这一点;随温度升高,调质石灰石具有最佳的硫化温度,此温度下其钙转化率最高;随SO2浓度增大,初始阶段煅烧/硫化反应速率升高,调质石灰石钙转化率增大;随醋酸浓度增大,调质石灰石的钙转化率提高,提高幅度因石灰石种类而异;氮吸附及压汞分析表明调质石灰石较未调质石灰石具有发达的孔结构,促进了硫化反应的进行。  相似文献   

20.
For an oxy-fuel circulating fluidized bed combustion system, the limestone calcination is normally prevented due to excessive CO2 partial pressures and the limestone is subject to a direct sulfation reaction. The enhancement of the direct sulfation of limestone by Na2CO3 was investigated under high CO2 partial pressure in a thermogravimetric apparatus (TGA) and scanning electron microscope (SEM) analysis method. A commercial limestone with a mean size of 18.8 μm was used. Experimental results indicate that the incorporation of Na+ ions in solid product CaSO4 lattice structures results in formation of more extrinsic point defects in the crystal lattices of CaSO4 and a significantly increased solid-state diffusivity/mobility in the solid product. So the direct sulfation of Na2CO3-doped limestone shows higher rate and higher degree of conversion in the later stage of sulfation, in comparison with the direct sulfation of original limestone. The reaction changes from diffusional control to chemical reaction control in the presence of Na2CO3 because of the effect of foreign ions on accelerating the solid-state diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号