首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel styrene functionalized monomers with phenylbenzo[d]imidazole units and the corresponding homopolymers are prepared. These side‐chain polymers show high glass‐transition temperatures that even exceed the corresponding value for the common electron‐transporting material 1,3,5‐tris(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)benzene (TPBI). Similar electronic behavior between the polymers and TPBI is shown. The polymers are used as matrices for phosphorescent dopants. The fabricated devices exhibit current efficiencies up to 38.5 cd A?1 at 100 cd m?2 and maximum luminances of 7400 cd m?2 at 10 V with a minimum turn‐on voltage as low as 2.70 V in single‐layer devices with an ITO/PEDOT:PSS anode (ITO = indium tin oxide, PEDOT:PSS = poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate)) and a CsF/Ca/Ag cathode.  相似文献   

2.
Bulk‐heterojunction photovoltaic cells consisting of a photoactive layer of poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) and a C60 derivative, (1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐methanofullerene), (PCBM), sandwiched between an indium tin oxide (ITO) anode covered with poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and an aluminum cathode have been analyzed using transmission electron microscopy (TEM) and cryogenic Rutherford backscattering spectrometry (RBS) to assess the structural and elemental composition of these devices. TEM of cross sections of fully processed photovoltaic cells, prepared using a focused ion beam, provide a clear view of the individual layers and their interfaces. RBS shows that during preparation diffusion of indium into the PEDOT:PSS occurs while the diffusion of aluminum into the polymer layers is negligible. An iodinated C60 derivative (I‐PCBM) was used to determine the concentration profile of this derivative in the vertical direction of a 100 nm active layer.  相似文献   

3.
The effects of anode/active layer interface modification in bulk‐heterojunction organic photovoltaic (OPV) cells is investigated using poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and/or a hole‐transporting/electron‐blocking blend of 4,4′‐bis[(p‐trichlorosilylpropylphenyl)‐phenylamino]biphenyl (TPDSi2) and poly[9,9‐dioctylfluorene‐coN‐[4‐(3‐methylpropyl)]‐diphenylamine] (TFB) as interfacial layers (IFLs). Current–voltage data in the dark and AM1.5G light show that the TPDSi2:TFB IFL yields MDMO‐PPV:PCBM OPVs with substantially increased open‐circuit voltage (Voc), power conversion efficiency, and thermal stability versus devices having no IFL or PEDOT:PSS. Using PEDOT:PSS and TPDSi2:TFB together in the same cell greatly reduces dark current and produces the highest Voc (0.91 V) by combining the electron‐blocking effects of both layers. ITO anode pre‐treatment was investigated by X‐ray photoelectron spectroscopy to understand why oxygen plasma, UV ozone, and solvent cleaning markedly affect cell response in combination with each IFL. O2 plasma and UV ozone treatment most effectively clean the ITO surface and are found most effective in preparing the surface for PEDOT:PSS deposition; UV ozone produces optimum solar cells with the TPDSi2:TFB IFL. Solvent cleaning leaves significant residual carbon contamination on the ITO and is best followed by O2 plasma or UV ozone treatment.  相似文献   

4.
Interface engineering is critical to the development of highly efficient perovskite solar cells. Here, urea treatment of hole transport layer (e.g., poly(3,4‐ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS)) is reported to effectively tune its morphology, conductivity, and work function for improving the efficiency and stability of inverted MAPbI3 perovskite solar cells (PSCs). This treatment has significantly increased MAPbI3 photovoltaic performance to 18.8% for the urea treated PEDOT:PSS PSCs from 14.4% for pristine PEDOT:PSS devices. The use of urea controls phase separation between PEDOT and PSS segments, leading to the formation of a unique fiber‐shaped PEDOT:PSS film morphology with well‐organized charge transport pathways for improved conductivity from 0.2 S cm?1 for pristine PEDOT:PSS to 12.75 S cm?1 for 5 wt% urea treated PEDOT:PSS. The urea‐treatment also addresses a general challenge associated with the acidic nature of PEDOT:PSS, leading to a much improved ambient stability of PSCs. In addition, the device hysteresis is significantly minimized by optimizing the urea content in the treatment.  相似文献   

5.
The main goal of the paper was investigation of influence of aluminum electrode preparation via thermal evaporation (TE) and the magnetron sputtering (MS) on power conversion efficiency (PCE) of polymeric solar cells. The photovoltaic properties of such three kinds devices based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as ITO/P3HT/Al, ITO/P3HT:PCBM (1:1, w/w)/Al and ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/Al were investigated. For the constructed devices impedance spectroscopy were analyzed. For devices lack of PEDOT:PSS layer or lack of PCBM, photovoltaic parameters were very low and similar to the parameters obtained for device with Al electrode prepared by magnetron sputtering. The devices comprising PEDOT:PSS with P3HT:PCBM showed the best photovoltaic parameters such as a VOC of 0.60 V, JSC of 4.61 mA/cm2, FF of 0.21, and PCE of 5.7 × 10?1%.  相似文献   

6.
Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices.  相似文献   

7.
8.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

9.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

10.
We demonstrate the maximum power conversion efficiency of 3.89% from organic photovoltaic cells using pentacene as a hole transport layer with PIN structure of ITO/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS)-glycerol/pentacene/pentacene:C60/C60/BCP (bathocuproine)/Al under standard AM 1.5 illumination (100 mW/cm2). To achieve high power conversion efficiency, the optimization of thickness of pentacene and glycerol-doped poly(3,4-ethylenedioxy-thiophene)–poly(styrene sulfonate) (G-PEDOT:PSS) as well as pentacene:C60 (1:1) thin film as an active layer was accomplished. Our results show that the PIN structure with enlarged interface between pentacene and C60 thin films increases the power conversion efficiency of the devices than the PN devices. The morphology of pentacene thin film with various thicknesses and glycerol-doped PEDOT:PSS layers crucially affected the performance characteristics of pentacene-based photovoltaic cells.  相似文献   

11.
In this paper,bulk heterojunction solar cells with poly-(3-hexylthiophene)(P3HT):[6,6]-phenyl-C61-butyric-acid-methylester(PCBM) as an active layer and modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) as a buffer layer are fabricated.The buffer layer is modified by adding 1% to 5% dimethyl sulfoxide(DMSO) into PEDOT:PSS solution before spin-coating.The conductivity of modified PEDOT:PSS and the performance of solar cells with modified PEDOT:PSS are measured.The highest conductivity of modified PEDOT:PSS with 4% DMSO can achieve 89.693 S/cm.The performance of organic solar cell with PEDOT:PSS modified by 4% DMSO is the best.The 4% DMSOmodified-PEDOT:PSS cell has a power conversion efficiency of 3.34%,V oc of 5.7 V,J sc of 14.56 mA/cm 2 and filling factor(FF) of 40.34%.  相似文献   

12.
The directional dependence of electron blocking by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated in organic photovoltaic devices. In a conventional OPV architecture we find that a doped interlayer forms between poly(3-hexylthiophene) (P3HT) and the PSS-rich top layer of spin-coated PEDOT:PSS films. In an inverted OPV architecture, we find no mixing between PEDOT:PSS and P3HT, which is due to the lower concentration of PSS in bulk PEDOT:PSS than is found in the PSS-rich top layer. Through electrical measurements of conventional and inverted photovoltaic devices we show that the interlayer is necessary for PEDOT:PSS to be electron blocking. This result implies that PEDOT:PSS is not intrinsically electron blocking and that its directional anisotropy must be considered when comparing the advantages and disadvantages of conventional and inverted architecture photovoltaic devices.  相似文献   

13.
Highly conductive and transparent poly‐(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant‐treated PEDOT:PSS films show a 35% improvement in sheet resistance (Rs) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre‐deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four‐layer PEDOT:PSS films have an Rs of 46 Ω per square with 82% transmittance (at 550 nm). These films, deposited on a pre‐strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to Rs, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)‐free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices.  相似文献   

14.
Herein, we report about an efficient and stable organic photovoltaic that uses a poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and molybdenum oxide (MoOX) mixture for the anode interfacial layer, and that can reach 4.43% power conversion efficiency (PCE) under AM1.5 conditions. Utilizing PEDOT:PSS:MoOX (1:1), the shelf lifetime of poly(3-hexylthiophene) (P3HT), and indene-C60 bisadduct (ICBA)-based solar cells without encapsulation, can be realized with only a 25% deterioration after 672 h of storage in air. Furthermore, we compare the photovoltaic performance of the P3HT:ICBA-based organic photovoltaic with PEDOT:PSS, and PEDOT:PSS:MoOX, in which PEDOT:PSS:MoOX has outperformed the others. In addition, the water vapor transmission rate of PEDOT:PSS:MoOX is 0.17 gm/(m2 day), which is much less than that of PEDOT:PSS.  相似文献   

15.
Although conventional laser ablation (CLA) method has widely been used in patterning of organic semiconductor thin films, its quality control still remains unsatisfied due to the ambiguous photochemical and photothermal processes. Based on industrial available near‐infrared laser source, herein, a novel “layer‐filter threshold” (LFT) technique is proposed, which involves the decomposition of targeted “layer‐filter” and subsequent explosive evaporation process to purge away the upper layers instead of layer‐by‐layer ablation. For photovoltaic device with structure of metal/blend/PEDOT:PSS/ITO/glass, the PEDOT:PSS layer as the “layer‐filter” is first demonstrated to be effective, and then the merged P1–P2 line and metal electrode layer are readily patterned through the “self‐aligned” effect and regulation of ablation direction, respectively. The correlation between laser fluence and explosive ablation efficacy is also investigated. Finally, photovoltaic modules based on classical P3HT:PC61BM and low‐bandgap PBDT‐TFQ:PC71BM systems are separately fabricated following the LFT technique. It is found that over 90% of geometric fill factor is achieved while device performances maintain in a limited change with increased number of series cells. In comparison to conventional laser ablation methods, the LFT technique does not require sophisticated instruments but reaches comparable processing accuracy, which shows promising potential in the fabrication and commercialization of organic semiconductor thin‐film devices.  相似文献   

16.
The detailed characterization of solution‐derived nickel (II) oxide (NiO) hole‐transporting layer (HTL) films and their application in high efficiency organic photovoltaic (OPV) cells is reported. The NiO precursor solution is examined in situ to determine the chemical species present. Coordination complexes of monoethanolamine (MEA) with Ni in ethanol thermally decompose to form non‐stoichiometric NiO. Specifically, the [Ni(MEA)2(OAc)]+ ion is found to be the most prevalent species in the precursor solution. The defect‐induced Ni3+ ion, which is present in non‐stoichiometric NiO and signifies the p‐type conduction of NiO, as well as the dipolar nickel oxyhydroxide (NiOOH) species are confirmed using X‐ray photoelectron spectroscopy. Bulk heterojunction (BHJ) solar cells with a polymer/fullerene photoactive layer blend composed of poly‐dithienogermole‐thienopyrrolodione (pDTG‐TPD) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) are fabricated using these solution‐processed NiO films. The resulting devices show an average power conversion efficiency (PCE) of 7.8%, which is a 15% improvement over devices utilizing a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL. The enhancement is due to the optical resonance in the solar cell and the hydrophobicity of NiO, which promotes a more homogeneous donor/acceptor morphology in the active layer at the NiO/BHJ interface. Finally, devices incorporating NiO as a HTL are more stable in air than devices using PEDOT:PSS.  相似文献   

17.
Hybrid thin film photovoltaic structures, based on hydrogenated silicon (Si:H), organic poly(3-hexythiophene):methano-fullerenephenyl-C61-butyric-acid-methyl-ester (P3HT:PCBM) and poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films, have been fabricated. Organic semiconductor thin films were deposited by spin-coating technique and were exposed to radio frequency plasma enhanced chemical vapor deposition (RF PECVD) of Si:H films at deposition temperature Td = 160 °C. Different types of structures have been investigated: H1) ITO/(p)SiC:H /P3HT:PCBM/(n) Si:H, H2) ITO/PEDOT:PSS/(i)Si:H/(n) Si:H and H3) ITO/PEDOT:PSS/P3HT:PCBM/(i)Si:H/(n)Si:H. Short circuit current density spectral response and current-voltage characteristics were measured for diagnostic of the photovoltaic performance. The current density spectral dependence of hybrid structures which contains organic layers showed improved response (50–80%) in high photon energy range (hν ≈ 3.1–3.5 eV) in comparison with Si:H reference structure. An adjustment in the absorbing layer thickness and in the contact material for ITO/PEDOT:PSS/(i)Si:H/(n)Si:H structure, resulted in a remarkably high short circuit current density (as large as 17.74 mA/cm2), an open circuit voltage of 640 mV and an efficiency of 3.75%.  相似文献   

18.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) grids have been successfully constructed by roll‐to‐roll compatible screen‐printing techniques and have been used as indium tin oxide (ITO)‐free anodes for flexible organic light‐emitting diodes (OLEDs). The grid‐type transparent conductive electrodes (TCEs) can adopt thicker PEDOT: PSS grid lines to ensure the conductivity, while the mesh‐like grid structure can play an important role to maintain high optical transparency. By adjusting grid periods, grid thickness and treatment of organic additives, PEDOT: PSS TCEs with high optical transparency, low sheet resistance, and excellent mechanical flexibility have been achieved. Using the screen‐printed PEDOT: PSS grids as the anodes, ITO‐free OLEDs achieved peak current efficiency of 3.40 cd A?1 at the current density of 10 mA cm?2, which are 1.56 times better than the devices with ITO glass as the anodes. The improved efficiency is attributed to the light extraction effect and improved transparency by the grid structure. The superior optoelectronic performances of OLEDs based on flexible screen‐printed PEDOT: PSS grid anodes suggest their great prospects as ITO‐free anodes for flexible and wearable electronic applications.  相似文献   

19.
We report on the photovoltaic properties of polymer solar cells that use NiO-coated indium tin oxide (ITO) as the hole-collecting electrode. The NiO films were prepared by atomic layer deposition (ALD) on top of ITO with thicknesses varying from 6 to 25 nm. The NiO films increase the work function (WF) of the ITO, allowing NiO-coated ITO to act as an efficient hole-collecting electrode. Devices made with pristine NiO showed poor current–voltage characteristics. However, subsequent O2-plasma treatment further increased the WF of NiO, tuning NiO-coated ITO into an efficient hole-collecting electrode for polymer solar cells based on the donor poly(3-hexylthiophene-2,5-diyl) (P3HT). The polymer solar cells with the O2-plasma treated NiO-coated ITO hole-collecting electrodes yield a power conversion efficiency of 4.1 ± 0.2% under simulated air mass 1.5 G 100 mW/cm2 illumination, which is comparable to reference devices with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-coated ITO hole-collecting electrodes.  相似文献   

20.
Organic–inorganic hybrid perovskites (OHPs) are promising emitters for light‐emitting diodes (LEDs) due to the high color purity, low cost, and simple synthesis. However, the electroluminescent efficiency of polycrystalline OHP LEDs (PeLEDs) is often limited by poor surface morphology, small exciton binding energy, and long exciton diffusion length of large‐grain OHP films caused by uncontrolled crystallization. Here, crystallization of methylammonium lead bromide (MAPbBr3) is finely controlled by using a polar solvent‐soluble self‐doped conducting polymer, poly(styrenesulfonate)‐grafted polyaniline (PSS‐g‐PANI), as a hole injection layer (HIL) to induce granular structure, which makes charge carriers spatially confined more effectively than columnar structure induced by the conventional poly(3,4‐ethylenedioythiphene):polystyrenesulfonate (PEDOT:PSS). Moreover, lower acidity of PSS‐g‐PANI than PEDOT:PSS reduces indium tin oxide (ITO) etching, which releases metallic In species that cause exciton quenching. Finally, doubled device efficiency of 14.3 cd A‐1 is achieved for PSS‐g‐PANI‐based polycrystalline MAPbBr3 PeLEDs compared to that for PEDOT:PSS‐based PeLEDs (7.07 cd A‐1). Furthermore, PSS‐g‐PANI demonstrates high efficiency of 37.6 cd A‐1 in formamidinium lead bromide nanoparticle LEDs. The results provide an avenue to both control the crystallization kinetics and reduce the migration of In released from ITO by forming OIP films favorable for more radiative luminescence using the polar solvent‐soluble and low‐acidity polymeric HIL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号