首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An adeno-associated virus vector containing a lacZ gene driven by a CMV immediate-early promoter (AAV beta-gal) was evaluated with respect to its transduction efficiency and integration ability in nondividing human NT neurons. A dose-dependent pattern in transduction efficiency of the AAV beta-gal was demonstrated immunocytochemically, with up to 100% of the neurons expressing the gene product. No neurotoxic effects of the vector were detected. Quantitative PCR analyses of high molecular weight cellular DNA from the transduced neurons indicated that the copy number of the AAV beta-gal genome increased gradually in a time dependent manner, suggesting a slow but progressive rate of vector integration over a period of approximately 1 week following transduction. Equal or greater transduction efficiency of the AAV beta-gal into NT neurons than into a standard target cell line indicated that the NT neurons were readily susceptible to AAV-mediated gene transfer. This study demonstrates that AAV-based vectors can efficiently transduce and stably express a foreign gene in post-mitotic human neurons.  相似文献   

3.
4.
Recent studies have opened the possibility that quiescent, G0/G1 hematopoietic stem cells (HSC) can be gene transduced; lentiviruses (such as HIV type 1, HIV) encode proteins that permit transport of the viral genome into the nucleus of nondividing cells. We and others have recently demonstrated efficient transduction by using an HIV-1-based vector gene delivery system into various human cell types including human CD34(+) cells or terminally differentiated neurons. Here we compare the transduction efficiency of two vectors, HIV-based and murine leukemia virus (MuLV)-based vectors, on untreated and highly purified human HSC subsets that are virtually all in G0/G1. The HIV vector, but not MuLV vector supernatants, transduced freshly isolated G0/G1 HSC from mobilized peripheral blood. Single-step transduction using replication-defective HIV resulted in HSC that expressed the green fluorescent protein (GFP) transgene while retaining their stem cell phenotype; clonal outgrowths of these GFP+ HSC on bone marrow stromal cells fully retained GFP expression for at least 5 weeks. MuLV-based vectors did not transduce resting HSC, as measured by transgene expression, but did so readily when the HSC were actively cycling after culture in vitro for 3 days in a cytokine cocktail. These results suggest that resting HSC may be transduced by lentiviral-based, but not MuLV, vectors and maintain their primitive phenotype, pluripotentiality, and at least in vitro, transgene expression.  相似文献   

5.
We have examined the feasibility of using interferon (IFN) gene transfer as a novel approach to anti-human immunodeficiency virus type 1 (HIV-1) therapy in this study. To limit expression of a transduced HIV-1 long terminal repeat (LTR)-IFNA2 (the new approved nomenclature for IFN genes is used throughout this article) hybrid gene to the HIV-1-infected cells, HIV-1 LTR was modified. Deletion of the NF-kappa B elements of the HIV-1 LTR significantly inhibited Tat-mediated transactivation in T-cell lines, as well as in a monocyte line, U937. Replacement of the NF-kappa B elements in the HIV-1 LTR by a DNA fragment derived from the 5'-flanking region of IFN-stimulated gene 15 (ISG15), containing the IFN-stimulated response element, partially restored Tat-mediated activation of LTR in T cells as well as in monocytes. Insertion of this chimeric promoter (ISG15 LTR) upstream of the human IFNA2 gene directed high levels of IFN synthesis in Tat-expressing cells, while this promoter was not responsive to tumor necrosis factor alpha-mediated activation. ISG15-LTR-IFN hybrid gene inserted into the retrovirus vector was transduced into Jurkat and U937 cells. Selected transfected clones produced low levels of IFN A (IFNA) constitutively, and their abilities to express interleukin-2 and interleukin-2 receptor upon stimulation with phytohemagglutinin and phorbol myristate acetate were retained. Enhancement of IFNA synthesis observed upon HIV-1 infection resulted in significant inhibition of HIV-1 replication for a period of at least 30 days. Virus isolated from IFNA-producing cells was able to replicate in the U937 cells but did not replicate efficiently in U937 cells transduced with the IFNA gene. These results suggest that targeting IFN synthesis to HIV-1-infected cells is an attainable goal and that autocrine IFN synthesis results in a long-lasting and permanent suppression of HIV-1 replication.  相似文献   

6.
Lentiviruses are potentially advantageous compared to oncoretroviruses as gene transfer agents because they can infect nondividing cells. We demonstrate here that human immunodeficiency virus type 1 (HIV-1)-based vectors were highly efficient in transducing purified human hematopoietic stem cells. Transduction rates, measured by marker gene expression or by PCR of the integrated provirus, exceeded 50%, and transduction appeared to be independent of mitosis. Derivatives of HIV-1 were constructed to optimize the vector, and a deletion of most of Vif and Vpr was required to ensure the long-term persistence of transduced cells with relatively stable expression of the marker gene product. These results extend the utility of this lentivirus vector system.  相似文献   

7.
Lentivirus vectors can transduce dividing and nondividing cells. Using three-plasmid transient transfections, high-titer (>10(9) IU/ml) recombinant lentivirus vectors pseudotyped with vesicular stomatitis virus G (VSV-G) protein can be generated (T. Kafri et al., Nat. Genet. 17:314-317, 1997; H. Miyoshi et al., Proc. Natl. Acad. Sci. USA 94:10319-10323, 1997; L. Naldini et al., Science 272:263-267, 1996). The recombinant lentiviruses can efficiently infect brain, liver, muscle, and retinal tissue in vivo. Furthermore, the transduced tissues demonstrated long-term expression of reporter genes in immunocompetent rodents. We now report the generation of a tetracycline-inducible VSV-G pseudotyped lentivirus packaging cell line which can generate virus particles at titers greater than 10(6) IU/ml for at least 3 to 4 days. The vector produced by the inducible cell line can be concentrated to titers of 10(9) IU/ml and can efficiently transduce nondividing cells in vitro and in vivo. The availability of a lentivirus packaging cell line will significantly facilitate the production of high-titer lentivirus vectors for gene therapy and study of human immunodeficiency virus biology.  相似文献   

8.
9.
Cytomegalovirus (CMV) and human herpesvirus-6 (HHV-6) infection stimulated HIV-1 replication and trans-activated the HIV-1 promoter (the long terminal repeat or LTR) to a similar extent in transfected, nonimmortalized, human fetal astrocytes. CMV infection increased basal LTR expression by approximately sevenfold, while HHV-6 infection increased basal LTR expression by fourfold. This enhancing effect required cell-cell contact between CMV-infected or HHV-6-infected and LTR-containing cells. To determine the target regions on the HIV promoter that respond to CMV and HHV-6 trans-activation, several modified LTR-reporter gene constructs were tested. Loss of functional NFkappaB, Sp1, or upstream modulatory sites on the LTR caused significant reduction ofbasal LTR expression in astrocytes. These elements also mediated the trans-activation events during HHV-6 or CMV infection in astrocytes, though to varying degrees. Electrophoretic mobility shift assays (EMSA) indicated that core, enhancer, and upstream modulatory regions of the LTR interacted specifically with nuclear proteins from both uninfected and CMV- or HHV-6-infected human fetal astrocytes. CMV or HHV-6 infection did not appear to induce unique, LTR-specific nuclear binding proteins, but rather enhanced the relative proportion of some of the existing protein complexes, in particular, the complexes formed with the AP-1 binding sites on the HIV-1 LTR (nt - 354 to - 316). Our data suggest that CMV or HHV-6 trans-activation of HIV LTR activity in human fetal astrocytes proceeds via intracellular molecular interactions involving herpesviral gene products, cellular proteins, and multiple sites on the LTR upstream of the TATA box. The pattern of LTR activity in astrocytes suggests that host cell factors modulating HIV expression may differ from those dominant in T-cells or immortalized astroglia, and this could contribute to differences in the astrocyte's ability to support HIV replication.  相似文献   

10.
Vectors based on herpes simplex virus type 1 (HSV-1) show promise for gene transfer into mammalian cells because of their wide host range, efficient infection and ability to deliver genes to nondividing cells. Defective HSV-1 vectors, or amplicons, are plasmid vectors which are unable to propagate on their own but contain specific HSV-1 sequences that, in the presence of helper virus, support DNA replication and subsequent packaging into virus particles. We compared three replication-incompetent HSV-1 mutants (KOS strain 5dl1.2, strain 17 D30EBA, KOS strain d120) as the helper virus for packaging the prototype defective HSV-1 vector, pHSVlac, which uses the HSV-1 immediate-early (1E) 4/5 promoter to regulate expression of the Escherichia coli lacZ gene. Use of 5dl1.2, which contains a deletion in the IE 2 gene, consistently produced virus stocks that contained a high level of vector, undetectable levels of wild-type HSV-1 and a ratio of vector to helper greater than 1. Virus stocks prepared using 5dl1.2 were superior to those prepared using helper viruses that harbor a deletion in the IE 3 gene, either D30EBA or dl20, and supported more efficient gene transfer than possible with previously published procedures. Lactate dehydrogenase efflux assays in rat cortical cultures showed that 5dl1.2 was no more cytotoxic than either D30EBA or dl20, despite the expression of more viral genes. Rat cortical cultures infected with pHSVlac packaged with either 5dl1.2 or D30EBA were used to quantify the stability of vector expression. Our results show a decrease in the number of cells with detectable levels of beta-galactosidase to 30% of peak levels after one week, irrespective of the helper virus used. However, simultaneous superinfection with 5dl1.2, but not with either D30EBA or dl20, produced a transient increase in the number of cells expressing beta-galactosidase. Superinfection with 5dl1.2 at 9 days after gene transfer increased the number of cells expressing detectable beta-galactosidase back to peak levels, most probably because of reactivation of the IE 4/5 promoter in pHSVlac. These results thus provide the first quantitative demonstration of long-term persistence of defective HSV-1 vectors in neurons.  相似文献   

11.
12.
13.
14.
Vectors derived from adeno-associated virus (AAV) have the potential to stably transduce mammalian cells by integrating into host chromosomes. Despite active research on the use of AAV vectors for gene therapy, the structure of integrated vector proviruses has not previously been analyzed at the DNA sequence level. Studies on the integration of wild-type AAV have identified a common site-specific integration locus on human chromosome 19; however, most AAV vectors do not appear to integrate at this locus. To improve our understanding of AAV vector integration, we analyzed the DNA sequences of several integrated vector proviruses. HeLa cells were transduced with an AAV shuttle vector, and integrated proviruses containing flanking human DNA were recovered as bacterial plasmids for further analysis. We found that AAV vectors integrated as single-copy proviruses at random chromosomal locations and that the flanking HeLa DNA at integration sites was not homologous to AAV or the site-specific integration locus of wild-type AAV. Recombination junctions were scattered throughout the vector terminal repeats with no apparent site specificity. None of the integrated vectors were fully intact. Vector proviruses with nearly intact terminal repeats were excised and amplified after infection with wild-type AAV and adenovirus. Our results suggest that AAV vectors integrate by nonhomologous recombination after partial degradation of entering vector genomes. These findings have important implications for the mechanism of AAV vector integration and the use of these vectors in human gene therapy.  相似文献   

15.
Previously we designed novel pseudotyped high-titer replication defective human immunodeficiency virus type 1 (HIV-1) vectors to deliver genes into nondividing cells (J. Reiser, G. Harmison, S. Kluepfel-Stahl, R. O. Brady, S. Karlsson, and M. Schubert, Proc. Natl. Acad. Sci. USA 93:15266-15271, 1996). Since then we have made several improvements with respect to the safety, flexibility, and efficiency of the vector system. A three-plasmid expression system is used to generate pseudotyped HIV-1 particles by transient transfection of human embryonic kidney 293T cells with a defective packaging construct, a plasmid coding for a heterologous envelope (Env) protein, and a vector construct harboring a reporter gene such as neo, ShlacZ (encoding a phleomycin resistance/beta-galactosidase fusion protein), HSA (encoding mouse heat-stable antigen), or EGFP (encoding enhanced green fluorescent protein). The packaging constructs lack functional Vif, Vpr, and Vpu proteins and/or a large portion of the Env coding region as well as the 5' and 3' long terminal repeats, the Nef function, and the presumed packaging signal. Using G418 selection, we routinely obtained vector particles pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-G) with titers of up to 8 x 10(7) CFU/microgram of p24, provided that a functional Tat coding region was present in the vector. Vector constructs lacking a functional Tat protein yielded titers of around 4 x 10(6) to 8 x 10(6) CFU/microgram of p24. Packaging constructs with a mutation within the integrase (IN) core domain profoundly affected colony formation and expression of the reporter genes, indicating that a functional IN protein is required for efficient transduction. We explored the abilities of other Env proteins to allow formation of pseudotyped HIV-1 particles. The rabies virus and Mokola virus G proteins yielded high-titer infectious pseudotypes, while the human foamy virus Env protein did not. Using the improved vector system, we successfully transduced contact-inhibited primary human skin fibroblasts and postmitotic rat cerebellar neurons and cardiac myocytes, a process not affected by the lack of the accessory proteins.  相似文献   

16.
Recent advances have enabled transfer of genes to various types of cells and tissues. The goals of the present study were to transfer genes to nodose sensory neurons using replication-deficient adenovirus vectors and to define the conditions needed to optimize the gene transfer. Neurons were dissociated from rat nodose ganglia and maintained in culture. Cultures were exposed for 30 min to vectors containing the beta-galactosidase gene lacZ driven by either the Rous sarcoma virus (RSV) or the cytomegalovirus (CMV) promoter. Cultures were fixed and treated with X-gal to evaluate lacZ expression 1-7 days after exposure to virus. Increasing concentrations of virus led to dose-related increases in the number of neurons expressing lacZ. LacZ was expressed in 8 +/- 2, 39 +/- 6, and 82 +/- 3% of neurons 1 day after exposure to 10(7), 10(8), and 10(9) pfu/ml of AdRSVlacZ, respectively (P < 0.05). The same doses of AdCMVlacZ led to expression in 41 +/- 9, 60 +/- 10, and 86 +/- 4% of neurons. Expression driven by the CMV promoter was essentially maximal within 1 day and remained stable for at least 7 days. In contrast, expression driven by the RSV promoter was less on day 1 but increased over time (1-7 days). There was no lacZ expression in vehicle-treated cultures and exposure to the adenovirus vectors did not adversely influence cell viability. Exposure of the neuronal cultures to an adenovirus vector containing the gene for green fluorescent protein (AdRSVgfp, 10(9) pfu/ml) enabled visualization of successful gene transfer in living neurons. The results indicate that gene transfer to cultured nodose neurons can be accomplished using adenovirus vectors. The expression of the transferred gene persists for at least 7 days, occurs more rapidly when expression is driven by the CMV compared with the RSV promoter, and occurs without adversely affecting cell viability.  相似文献   

17.
Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-alpha promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 x 10(13) particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 micrograms/ml in SCID and over 400 micrograms/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions.  相似文献   

18.
The transfer of alpha/beta T cell receptor (TCR) genes into T lymphocytes or their precursors could provide a means to increase frequency of tumor- or pathogen-specific cytotoxic T lymphocytes. To begin to address this possibility, we have used class I MHC-restricted alpha/beta TCR cDNAs to develop a retroviral TCR expression vector. Alpha- and beta-chain cDNAs were inserted into a derivative of the LN series of retroviral vectors, with the retroviral LTR directing expression of TCR-beta and an internal cytomegalovirus promoter/enhancer driving TCR-alpha expression. The variable region fragments can be replaced using unique restriction sites that have been introduced into the proximal constant regions. We have used this vector system to transfer two different pairs of alpha/beta TCR genes into an alpha- and beta-chain-deficient T cell hybridoma. TCR- hybridoma cells were transduced by coculture with pools of virus-producing cells, and fluorescence-activated cell sorting was used to enrich for cells expressing the transduced TCR. Transduction with either alpha/beta TCR restores stable, long-lived expression of the alpha/beta TCR complex. TCR-mediated signal transduction is also reconstituted, as demonstrated by the ability of transduced cells to secrete IL-2 following stimulation with Vbeta-specific antibodies. Our results suggest that alpha/beta T cell receptor gene transfer could provide a basis for new approaches to immunotherapy, and that further studies examining the in vivo fate of transduced TCR are possible.  相似文献   

19.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

20.
Retroviral vectors were engineered to express either sense (MoTiN-TRPsie+) or sense and antisense (MoTN-TRPsie+/-) RNAs containing the human immunodeficiency virus type-1 (HIV-1) trans -activation response (TAR) element and the extended packaging (Psie) signal. The Psie signal includes the dimer linkage structure (DLS) and the Rev response element (RRE). Amphotropic vector particles were used to transduce a human CD4+ T-lymphoid (MT4) cell line. Stable transductants were then tested for sense and antisense RNA production and susceptibility to HIV-1 infection. HIV-1 production was significantly decreased in cells transduced with MoTiN-TRPsie+ and MoTN-TRPsie+/-vectors. Efficient packaging of sense and most remarkably of antisense RNA was observed within the virus progeny. Infectivity of this virus was significantly decreased in both cases, suggesting that the interfering RNAs were co-packaged with HIV-1 RNA. Vector transduction was not expected to occur and was not observed. Inhibition of HIV-1 replication was also demonstrated in human peripheral blood lymphocytes transduced with retroviral vectors expressing antisense RNA. These results suggest that (i) both sense and antisense RNAs were co-packaged with HIV-1 RNA, (ii) the co-packaged sense and antisense RNAs inhibited virus infectivity and (iii) the co-packaged sense and antisense RNAs were not transduced. Sense and antisense RNA-based strategies may also be used to co-package other interfering RNAs (e.g. ribozymes) to cleave HIV-1 virion RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号