共查询到20条相似文献,搜索用时 55 毫秒
1.
为了提高系统的控制性能,解决单一控制方法不足,将分数阶PID算法与滑模变结构算法相结合,同时为了规避分数阶PID的滑模变结构算法手动调节参数的复杂性以及不确定性,采用粒子群算法对其参数进行优化,完善分数阶PID的滑模变结构控制器,提高其控制精度.并将新型算法应用于单相全桥逆变器,通过Matlab仿真并与分数阶PID滑模变结构控制函数(PID-SMC)及滑模变结构控制(SMC)方法相比较,研究结果表明,粒子群算法整定参数收敛速度快,较短时间内可以找出最优解,整定后的算法静态误差小,上升速度快,抑制系统抖振能力强,具有较强的鲁棒性. 相似文献
3.
为了提高分数阶比例积分微分(FOPID)控制器的控制效果,针对FOPID控制器参数整定的范围广、复杂性高等特点,提出改进的粒子群优化(PSO)算法优化FOPID控制器参数的方法。该算法对PSO中惯权重系数的上下限设定范围并随迭代次数以伽玛函数方式非线性下降,同时粒子的惯性权重系数和学习因子根据粒子的适应度值大小动态调整,使粒子保持合理运动惯性和学习能力,提高粒子的自适应能力。仿真实验表明,改进的PSO算法优化FOPID控制器的参数较标准PSO算法具有收敛速度快和收敛精度高等优点,使FOPID控制器得到较优的综合性能。 相似文献
4.
针对粒子群优化算法(particle swarm optimization algorithm,PSO)后期易陷入局部最优解这一缺陷,提出一种惯性权重余弦调整的粒子群优化算法(IWCPSO)。在迭代过程中对惯性权重引入余弦变化,改善迭代后期的不足,提高算法的精度。在matlab 2016仿真环境下,与Ziegler-Nichols(ZN)公式法和惯性权重正弦调整的粒子群优化算法(SIPSO)在PID控制参数优化方面的应用效果对比得出该算法是一种使得PID控制系统响应函数性能指标更好,整定结果更精确的算法。 相似文献
5.
6.
为避免分数阶PID预测函数手动调节参数的不确定性以及繁琐性,应用粒子群算法优化其参数,完善分数阶PID预测函数控制器,并提高其控制精度,充分体现了算法的智能性。将粒子群整定分数阶PID预测函数算法应用于单变量的励磁控制系统中,通过Matlab仿真并与模糊分数阶PID预测函数以及经验调节方法相比较,结果表明,粒子群算法整定参数收敛速度快,找到最优点时间短,整定后的算法具有静态误差小、无超调、上升速度快、调节时间短、抗干扰能力强等优点,能很好地满足励磁系统的动态特性,并具有较强的鲁棒性及适应性。 相似文献
7.
针对果蝇优化算法( FOA)收敛速度快但寻优精度低的缺点,为了改善果蝇算法的优化性能,提出一种混合果蝇优化算法( HFOA)。HFOA采用分段优化的思想,在优化过程后期采用收敛稳定性较好的粒子群优化( PSO)算法优化果蝇算法中果蝇个体飞行距离和味道浓度的判定值,采用误差性能指标积分准则ITAE作为适应度函数,并将优化方案应用于一类不稳定系统的PID控制。Matlab仿真验证表明:HFOA计算高效,具有良好的稳定性,收敛精度高,进而验证了HFOA应用于PID控制参数优化是可行而有效的。 相似文献
8.
针对传统粒子群优化算法(PSO)收敛速度慢及容易陷入局部极小化的问题,提出了一种改进的粒子群优化算法。新算法结合分数阶微分具有的记忆特性,使得粒子的更新融入了轨迹信息,提高了算法的收敛速度。使用Alpha稳定分布代替均匀分布使得粒子在一定概率条件下可以逃逸局部极小点,提高了粒子的全局搜索能力。仿真结果表明,算法不仅在单模态函数下具有更快的收敛速度和更有效的全局搜索能力,在复杂的具有欺骗性的多模态函数下也取得较理想的实验结果,证实了动态分数阶和Alpha稳定分布可以有效地提高粒子群优化算法的性能。 相似文献
9.
10.
基于粒子群算法的一种非线性PID控制器 总被引:1,自引:0,他引:1
基于PID控制器各增益参数与偏差信号之间非线性关系,分析了一种P/I/D各部分参数关于误差的理想变化过程,根据控制与误差之间的调节规律,给定一组增益参数的连续非线性函数,构造出一种非线性PID控制器。粒子群算法具有对整个参数空间进行高效并行搜索的特点,采用该算法寻优整定该非线性PID控制器的各增益参数。仿真结果表明了所提算法的有效性和所设计控制器的优越性能。 相似文献
11.
《Control Engineering Practice》2009,17(12):1380-1387
Application of fractional order PID (FOPID) controller to an automatic voltage regulator (AVR) is presented and studied in this paper. An FOPID is a PID whose derivative and integral orders are fractional numbers rather than integers. Design stage of such a controller consists of determining five parameters. This paper employs particle swarm optimization (PSO) algorithm to carry out the aforementioned design procedure. PSO is an advanced search procedure that has proved to have very high efficiency. A novel cost function is defined to facilitate the control strategy over both the time-domain and the frequency-domain specifications. Comparisons are made with a PID controller and it is shown that the proposed FOPID controller can highly improve the system robustness with respect to model uncertainties. 相似文献
12.
Freire Hélio Moura Oliveira P. B. Solteiro Pires E. J. 《International Journal of Control, Automation and Systems》2017,15(2):918-932
International Journal of Control, Automation and Systems - Proportional, integrative and derivative (PID) controllers are among the most used in industrial control applications. Classical PID... 相似文献
13.
Yinggan Tang Mingyong CuiChangchun Hua Lixiang Li Yixian Yang 《Expert systems with applications》2012,39(8):6887-6896
Fractional-order PID (FOPID) controller is a generalization of standard PID controller using fractional calculus. Compared to PID controller, the tuning of FOPID is more complex and remains a challenge problem. This paper focuses on the design of FOPID controller using chaotic ant swarm (CAS) optimization method. The tuning of FOPID controller is formulated as a nonlinear optimization problem, in which the objective function is composed of overshoot, steady-state error, raising time and settling time. CAS algorithm, a newly developed evolutionary algorithm inspired by the chaotic behavior of individual ant and the self-organization of ant swarm, is used as the optimizer to search the best parameters of FOPID controller. The designed CAS-FOPID controller is applied to an automatic regulator voltage (AVR) system. Numerous numerical simulations and comparisons with other FOPID/PID controllers show that the CAS-FOPID controller can not only ensure good control performance with respect to reference input but also improve the system robustness with respect to model uncertainties. 相似文献
14.
针对大滞后系统,提出一种基于微粒群算法的灰色预测PID控制算法.采用灰色预测模型GMC(1,2)预测时滞系统的输出并用微粒群算法优化PID控制器的参数.这种控制方法不需要精确的数学模型,在线估计参数少,计算简单.仿真结果表明该方法的有效性. 相似文献
15.
针对自动化控制系统中PID控制器参数整定困难的问题,提出了基于粒子群算法的PID控制器的设计方法,给出了具体的实验架构。采用系统参数鉴定的方式得到直流伺服发电机的传递函数,并利用粒子群算法搜寻PID参数。实验采用MATLAB仿真证明了该方法的可行性和优越性。所得到模拟结果跟遗传算法搜索PID参数的结果做比较,结果显示用粒子群算法调整PID参数所得到的运算时间比用遗传算法的运算时间要短。 相似文献
16.
This paper presents a new algorithm designed to find the optimal parameters of PID controller. The proposed algorithm is based on hybridizing between differential evolution (DE) and Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithms. The proposed algorithm (ALC-PSODE) is tested on twelve benchmark functions to confirm its performance. It is found that it can get better solution quality, higher success rate in finding the solution and yields in avoiding unstable convergence. Also, ALC-PSODE is used to tune PID controller in three tanks liquid level system which is a typical nonlinear control system. Compared to different PSO variants, genetic algorithm (GA), differential evolution (DE) and Ziegler–Nichols method; the proposed algorithm achieve the best results with least standard deviation for different swarm size. These results show that ALC-PSODE is more robust and efficient while keeping fast convergence. 相似文献
17.
S.-Z. Zhao 《Information Sciences》2011,181(16):3323-3335
In this paper, two lbests multi-objective particle swarm optimization (2LB-MOPSO) is applied to design multi-objective robust Proportional-integral-derivative (PID) controllers for two MIMO systems, namely, distillation column plant and longitudinal control system of the super maneuverable F18/HARV fighter aircraft. Multi-objective robust PID controller design problem is formulated by minimizing integral squared error (ISE) and balanced robust performance criteria. During the search, 2LB-MOPSO can focus on small regions in the parameter space in the vicinity of the best existing fronts. As the lbests are chosen from the top fronts in a non-domination sorted external archive of reasonably large size, the offspring obtained can be more diverse with good fitness. The performance of various optimal PID controllers is compared in terms of the sum of ISE and balanced robust performance criteria. For the purpose of comparison, 2LB-MOPSO, NSGA-II as well as earlier reported Riccati, IGA and OSA methods are considered. The performance of PID controllers obtained using 2LB-MOPSO is better than that of others. In addition, Hypervolume-based comparisons are carried out to show the superior performance of 2LB-MOPSO over NSGA-II. The results reveal that 2LB-MOPSO yields better robustness and consistency in terms of the sum of ISE and balanced robust performance criteria than various optimal PID controllers. 相似文献
18.
Tae-Hyoung Kim Author Vitae Ichiro Maruta Author Vitae Author Vitae 《Automatica》2008,44(4):1104-1110
This paper proposes a novel tuning strategy for robust proportional-integral-derivative (PID) controllers based on the augmented Lagrangian particle swarm optimization (ALPSO). First, the problem of PID controller tuning satisfying multiple H∞ performance criteria is considered, which is known to suffer from computational intractability and conservatism when any existing method is adopted. In order to give some remedy to such a design problem without using any complicated manipulations, the ALPSO based robust gain tuning scheme for PID controllers is introduced. It does not need any conservative assumption unlike the conventional methods, and often enables us to find the desired PID gains just by solving the constrained optimization problem in a straightforward way. However, it is difficult to guarantee its effectiveness in a theoretical way, because PSO is essentially a stochastic approach. Therefore, it is evaluated by several simulation examples, which demonstrate that the proposed approach works well to obtain PID controller parameters satisfying the multiple H∞ performance criteria. 相似文献
19.
针对微粒群优化算法存在的早熟问题,提出了一种基于T-S模型的模糊自适应PSO算法(T-SPSO算法)。算法依据种群当前最优性能指标和惯性权重值所制定T-S规则,动态自适应惯性权重取值,改善了PSO算法的收敛性。将该算法应用于PID控制器的参数整定,可得到更优的控制器参数。仿真结果验证了所提出算法的有效性和所设计控制器的优越性。 相似文献
20.
结合粒子群优化算法和拟牛顿法的优点,提出了一种混合粒子群优化算法。该算法首先运行粒子群优化算法,到进化到一定程度时,把当代的最好点作为拟牛顿法的初始点,再利用拟牛顿法,对其进行二次优化。算法充分发挥了粒子群优化算法的全局搜索性和拟牛顿法的局部精细搜索性,同时也克服了粒子群算法后期搜索效率低和拟牛顿法对初始点敏感的缺陷。数值实验结果表明,该算法具有很高的收敛速度和求解精度。 相似文献