首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
In this work, near-infrared (NIR)-responsive core–shell gold nanorods/mesoporous silica/reduced graphene oxide (Au/SiO2/rGO) nanoparticles with synergistically enhanced photothermal stability and transition effect had been prepared via electrostatic interaction. Gold nanorods (AuNRs) and rGO were employed as the NIR-responsive components. UV–Vis–NIR extinction spectra revealed that the surface plasmon resonance peak of AuNRs from Au/SiO2/rGO nanohybrids remained unchanged after 9 h NIR exposure. UV–Vis–NIR extinction results also showed that thin silica shell was superior to the thick ones in the photothermal stability improvement of Au/SiO2/rGO nanoparticles. Moreover, the doxorubicin release of Au/SiO2/rGO was more rapid than that of Au/SiO2 upon NIR irradiation, indicating that synergistically enhanced photothermal effect between rGO and AuNRs endowed Au/SiO2/rGO nanoparticles with excellent photothermal transition efficiency. Such novel NIR-responsive core–shell hybrid nanoparticles with enhanced photothermal stability and transition effect are well suited for further biological applications, such as photothermal therapy, bioimaging and drug delivery.  相似文献   

2.
In this paper, SiO2–Au–Cu2O core/shell/shell nanoparticles were synthesized by reducing gold chloride on 3-amino-propyl-triethoxysilane molecules attached silica nanoparticle cores for several stages. Cu2O nanoparticles were synthesized readily with the size of 4–5 nm using a simple route of sol–gel method Then, they were clung to the surface of Au seeds. The morphology of the resultant particles was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Transmission electron microscopy images demonstrate growth of monodispersed gold seeds and Cu2O nanoparticles in narrow size up to 10 nm and 5 nm, respectively. The presence of gold and Cu2O coating was confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. Absorption spectroscopy shows considerably 40 nm blue shift in absorption edge for SiO2–Au–Cu2O nanostructure rather than SiO2–Au core/shell nanoparticles.  相似文献   

3.
A new kind of superparamagnetic luminescent nanocomposite particles has been synthesized using a modified Stöber method combined with an electrostatic assembly process. Fe3O4 superparamagnetic nanoparticles were coated with uniform silica shell, and then 3-aminopropyltrimethoxysilane was used to terminate the silica surface with amino groups. Finally, negatively charged CdSe quantum dots (QDs) were assembled onto the surface of the amino-terminated SiO2/Fe3O4 nanoparticles through electrostatic interactions. X-ray diffraction (XRD), transmission electron microscopy (TEM), microelectrophoresis, UV-vis absorption and emission spectroscopy and magnetometry were applied to characterize the nanocomposite particles. Dense CdSe QDs were immobilized on the silica surface. The thickness of silica shell was about 35 nm and the particle size of the final products was about 100 nm. The particles exhibited favorable superparamagnetic and photoluminescent properties.  相似文献   

4.
A novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). The silanization of the QDs was carried out by using partially hydrolyzed tetraethyl orthosilicate (TEOS) to replace organic ammine or tri-n-octylphosphine oxide on the surface of the QDs. The partially hydrolyzed 3-mercaptopropyltrimethoxysilane attached to the hydrolyzed TEOS layer on the QDs prevented the QDs from agglomeration when the QDs were transferred into water. The functional SiO2-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. The SiO2-coated QDs exhibited the same absorption and photoluminescence (PL) spectra as those of initial QDs in organic solvents. The SiO2-coated QDs preserved PL intensities, is colloidally stable over a wide pH range (pH 6-11). Because the mean diameter of amphiphilic polymer-coated QDs was almost 2 times of that of functional SiO2-coated QDs, the QD phase transfer by silanization is a well-established method for generating biocompatible QDs.  相似文献   

5.
NIR‐emitting CdSeTe/CdS/ZnS core/shell/shell QD‐encoded microbeads are combined with common flow cytometry with one laser for multiplexed detection of hepatitis B virus (HBV). A facile one‐pot synthetic route is developed to prepare CdSeTe/CdS/ZnS core/shell/shell QDs with high photoluminescence quantum yield and excellent stability in liquid paraffin, and a Shirasu porous glass (SPG) membrane emulsification technique is applied to incorporate the QDs into polystyrene–maleic anhydride (PSMA) microbeads to obtain highly fluorescent QD‐encoded microbeads. The relatively wide NIR photoluminescence full width half maximum of the CdSeTe/CdS/ZnS QDs is used to develop a ‘single wavelength’ encoding method to obtain different optical codes by changing the wavelengh and emission intensity of the QDs incorporated into the microbeads. Moreover, a detection platform combining NIR‐emitting CdSeTe/CdS/ZnS QD‐encoded microbeads and Beckman Coulter FC 500 flow cytometry with one laser of 488 nm is successfully used to conduct a 2‐plex hybridization assay for hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and a 3‐plex hybridization assay for hepatitis B surface antibody (HBsAb), hepatitis B e antibody (HBeAb), and hepatitis B core antibody (HBcAb), which suggests the promising application of NIR QD‐encoded microbeads for multiplex immunoassays.  相似文献   

6.
Thioglycolic acid (TGA)-coated colloidal Ag2S quantum dots (QDs) emitting in the near-infrared (NIR) region upon excitation by an 808 nm diode laser were synthesized. The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces and could be easily controlled by a simple dilution process due to the concentration-dependent surface structure of the colloidal QDs. Upon dilution of the solution, the PL intensity initially increased before later decreasing, with a blueshift being observed in the PL spectra. These phenomena can be accounted for by the aggregation of QDs due to a decrease in the content of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET), and re-emission of the surface energy level.  相似文献   

7.
All‐inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion‐exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well‐controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light‐emitting diode (LED) is successfully prepared by the combination of a blue on‐chip LED device and the above perovskite mixture. The as‐prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color‐rendering index of Ra = 91, demonstrating their broad future applications in solid‐state lighting fields.  相似文献   

8.
The current work is the first effort to show the capability of SnTe quantum dots (QDs) in as a quantum dots solar cell device, which work in visible-near-infrared (NIR) regions, and improvement of the solar cell parameters by Eu-doping. Undoped and Eu-doped SnTe QDs with different Eu concentration from 2 to 6% were synthesized by a co-precipitation method. X-ray diffraction patterns and transmission electron microscopy images indicated that, crystallite and particle size of the samples were decreased by increasing of Eu content. Fourier-transform infrared (FTIR) and Raman spectroscopy results revealed that some vibration modes were appeared and disappeared by Eu-doping. According to the photoluminescence (PL) results, PL intensity of the doped sample was enhanced significantly in the green region in comparison to the PL intensity of the undoped sample. Ultraviolet-visible-near infrared spectroscopy results indicated that the pristine and Eu(2%)-doped samples don’t have any absorption in the visible region, while, Eu(4% and 6%)-doped SnTe QDs showed a good absorption in this region. Photocurrent measurements showed that, unlike the pristine and Eu(2%)-doped QDs, Eu(4% and 6%)-doped SnTe QDs showed a high responsivity in the visible and NIR regions. Solar cell measurements showed that, solar cell parameters such as short current density (Jsc), open circuit voltage (Voc), conversion efficiency values (η), and fill factor (FF) were increased by Eu-doping.  相似文献   

9.
Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350–600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.   相似文献   

10.
Koktysh D  Bright V  Pham W 《Nanotechnology》2011,22(27):275606
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe3O4 nanoparticles and visible light emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.  相似文献   

11.
MoS2 quantum dots (QDs)‐based white‐light‐emitting diodes (QD‐WLEDs) are designed, fabricated, and demonstrated. The highly luminescent, histidine‐doped MoS2 QDs synthesized by microwave induced fragmentation of 2D MoS2 nanoflakes possess a wide distribution of available electronic states as inferred from the pronounced excitation‐wavelength‐dependent emission properties. Notably, the histidine‐doped MoS2 QDs show a very strong emission intensity, which exceeds seven times of magnitude larger than that of pristine MoS2 QDs. The strongly enhanced emission is mainly attributed to nitrogen acceptor bound excitons and passivation of defects by histidine‐doping, which can enhance the radiative recombination drastically. The enabled electroluminescence (EL) spectra of the QD‐WLEDs with the main peak around 500 nm are found to be consistent with the photoluminescence spectra of the histidine‐doped MoS2 QDs. The enhanced intensity of EL spectra with the current increase shows the stability of histidine‐doped MoS2 based QD‐WLEDs. The typical EL spectrum of the novel QD‐WLEDs has a Commission Internationale de l'Eclairage chromaticity coordinate of (0.30, 0.36) exhibiting an intrinsic broadband white‐light emission. The unprecedented and low‐toxicity QD‐WLEDs based on a single light‐emitting material can serve as an excellent alternative for using transition metal dichalcogenides QDs as next generation optoelectronic devices.  相似文献   

12.
We demonstrate an organic synthesis to fabricate hydrophobic core/shell CdSe/Cd1?x Zn x S quantum dots (QDs) with tunable photoluminescence (PL) between green and red at relatively low temperature using trioctylphosphine S reacted directly with cadmium and zinc acetate. A seeded growth strategy was used for preparing large CdSe cores. Large CdSe cores revealed a rod-like morphology while small one exhibited a spherical shape. Being coated with a Cd1?x Zn x S shell on spherical CdSe cores with an average size of 3.9 nm in diameter, core/shell QDs exhibited a cubic morphology (a length of 5 nm). In contrast, the core/shell QDs created using a small core (3.3 nm in diameter) show a spherical morphology. Namely, the anisotropic aggregation behavior of CdS monomers on CdSe cores occurs when the rod-like core is coated with a Cd1?x Zn x S shell. CdS interlayer plays an important role for such morphology evolution because all CdSe cores with a pure ZnS shell exhibited a spherical morphology. The PL properties of CdSe/Cd1?x Zn x S core/shell QDs depended strongly on the size and morphology of the cores. The QDs revealed a narrow and tunable PL spectrum. It is believed that this facile strategy can be extended to synthesize other core–shell QDs at low temperature.  相似文献   

13.
Fluorescence in the second near‐infrared window (NIR‐II, 900–1700 nm) has drawn great interest for bioimaging, owing to its high tissue penetration depth and high spatiotemporal resolution. NIR‐II fluorophores with high photoluminescence quantum yield (PLQY) and stability along with high biocompatibility are urgently pursued. In this work, a Ag‐rich Ag2Te quantum dots (QDs) surface with sulfur source is successfully engineered to prepare a larger bandgap of Ag2S shell to passivate the Ag2Te core via a facile colloidal route, which greatly enhances the PLQY of Ag2Te QDs and significantly improves the stability of Ag2Te QDs. This strategy works well with different sized core Ag2Te QDs so that the NIR‐II PL can be tuned in a wide range. In vivo imaging using the as‐prepared Ag2Te@Ag2S QDs presents much higher spatial resolution images of organs and vascular structures as compared with the same dose of Ag2Te nanoprobes administrated, suggesting the success of the core–shell synthetic strategy and the potential biomedical applications of core–shell NIR‐II nanoprobes.  相似文献   

14.
Cadmium-free I-III-VI quantum dots (QDs), represented by Cu-In-S (CIS), are widely investigated for their non-toxicity and tunable emission properties. In this work, Zn-Cu-In-S (ZCIS) alloyed QDs were synthesized via a solvothermal approach by heating up a mixture of the corresponding metal precursors and sulphur powder with dodecanethiol in oleylamine media, and the fluorescent intensity was greatly enhanced by coating ZnS (ZS) shell. By changing the ratio of Cu, the as prepared ZCIS-ZS QDs showed composition-tunable photoluminescent (PL) emission over the visible spectral window from about 500 nm to 620 nm, which is much wider than that of CIS QDs. Moreover, the influence of excitation wavelength, reaction temperature and time on the optical properties of the ZCIS-ZS QDs was also studied. This research provides a feasible and simple approach to prepare ZCIS-ZS QDs with large tunable spectral range on visible region, which could greatly contribute to the development of potential applications due to their non-toxicity and excellent optical properties.  相似文献   

15.
We have studied the influence of monodisperse Ag/SiO2 core–shell-type nanoparticles with a core diameter of 17 nm and a dielectric-shell thickness within 0–40 nm on the photoluminescence of CdSe/ZnS quantum dots (QDs) excited by laser at a wavelength corresponding to the plasmon resonance in Ag/SiO2 nanoparticles. It is established that the intensity of QD luminescence in the composite system exhibits up to 8.7-fold increase.  相似文献   

16.
The present work proposes a preparation method for multilayered Au nanoparticle/silica/gadolinium compound core–shell (Au/SiO2/GdC) particles. Silica-coated Au core–shell (Au/SiO2) particles with a size of 38.0?nm were prepared by a sol-gel reaction in the presence of the Au nanoparticles with a size of 15.5?nm. Multilayered Au/SiO2/GdC particles with sizes of ca. 35–52?nm were prepared by a homogeneous precipitation reaction in the presence of Au/SiO2 particles. The computed tomography (CT) value of the Au/SiO2/GdC colloid solution containing 4.3?×?10?2?M Au was 344.1?HU: Its converted CT value (CT divided by Au concentration) was as large as 8.0?×?103?HU/M. The r1 value of the Au/SiO2/GdC colloid solution was as large as 3.5?mM?1?s?1.  相似文献   

17.
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high‐priority target yet grand challenge. In this work, for the first time, metal–organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near‐infrared (NIR) region. In the core–shell structured upconversion nanoparticles (UCNPs)‐Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of “bare and clean” Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g?1 h?1) under simulated solar light, and the involved mechanism of photocatalytic H2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H2 production by light harvesting in all UV, visible, and NIR regions.  相似文献   

18.
The preparation and characterisation of core–shell magnetic nanostructure with nickel oxide (NiO) core and silica (SiO2) as shell has been reported. Nanoparticles of bare NiO were produced by co-precipitation technique, and silica was coated on NiO using the standard Stober’s protocol. Structural and metal oxide vibrations analysed with X-ray diffractometer (XRD) and Fourier transform infrared spectra (FTIR) confirm the formation of core–shell nanostructures. Spherical morphology of the samples was initially observed in SEM, and core–shell nature was further confirmed by high-resolution transmission electron microscopy (HRTEM) analysis. Ultraviolet (UV)–visible spectroscopic studies reveal a strong interaction between core and shell materials which leads to a significant alteration in the optical absorption. A distinct bluish green emission observed in the photoluminescence (PL) studies confirms the presence of oxygen vacancies. Coating of SiO2 on NiO was found to amend the magnetic behaviour of core–shell system, and this change in magnetic ordering was explained on the basis of typical interfacial effects between the core–shell structures.  相似文献   

19.
New 3-layer near-infrared reflective glasses were prepared by coating clear float soda-lime glass with nanostructured TiO2 and SiO2 films using a dip coating technique. Reflective interference filters at NIR region (800–1000 nm) were designed by simulation and prepared onto 4 mm clear glass. Optical, microstructural and mechanical properties were determined for the coated glasses. 3-layer sol–gel glasses show high visible transmittance >70% combined with high solar reflectance about 30% (with reflectivity up to 60% at region from 800 to 950 nm) and high UV blockage (transmittance <35%). Due to good abrasion resistance of the filters, application for monolithic windows in automotive and architectural areas is promising.  相似文献   

20.
Core–shell SiO2@ZnAl2O4:Eu3+ (5?mol%) nanophosphor (NP) with coatings up to the level IV has been prepared by a facile solvothermal route, followed by heat treatment. Scanning electron microscopy studies of fabricated core–shell particles displays good spherical shape and non-agglomeration with a narrow size distribution. The thickness of the shell increased with increase in coating cycles. Photoluminescence (PL) studies exhibited strong red emission peaks at 612?nm corresponding to the 5Do?→?7F2 transition of the Eu3+ ions. PL intensity increased with calcination temperature and coating cycles. The color coordinates of the coated NP were turned towards intense pure red emission with color purity ~95%. Powder dusting method was used to visualize latent fingerprints (LFPs) by staining uncoated and coated NP on various porous and non-porous surfaces under UV light. It was clear that core–shell NP display high sensitivity, reproducibility, selectivity, reliability, and can obtain the complete three levels of fingerprint ridge details. Judd–Ofelt (J-O) intensity parameters and radiative properties, namely transition probabilities, radiative lifetimes, branching ratios, and quantum efficiency were evaluated. The aforementioned results established that the SiO2@ZnAl2O4:Eu3+ (5?mol%) NP can be used as an ideal candidate for multifunctional applications such as WLEDs, LFPs, anticounterfeiting etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号