首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Under high boron (B) conditions, nodulin 26-like intrinsic protein 5;1 (NIP5;1) mRNA, a boric acid channel, is destabilized to avoid excess B entry into roots of Arabidopsis thaliana. In this regulation, the minimum upstream open reading frame (uORF), AUGUAA, in its 5′-untranslated region (5′-UTR) is essential, and high B enhances ribosome stalling at AUGUAA and leads to suppression of translation and mRNA degradation. This B-dependent AUGUAA-mediated regulation occurs also in animal transient expression and reticulocyte lysate translation systems. Thus, uncovering the ubiquitousness of B-dependent unique regulation is important to reveal the evolution of translational regulation. In the present study, we examined the regulation in Saccharomyces cerevisiae. Reporter assay showed that in yeast, carrying ATGTAA in 5′-UTR of NIP5;1 upstream of the reporter gene, the relative reporter activities were reduced significantly under high B conditions compared with control, whereas deletion of ATGTAA abolished such responses. This suggests that AUGUAA mediates B-dependent regulation of translation in Saccharomyces cerevisiae. Moreover, the deletion of ATGTAA resulted in up to 10-fold increase in general reporter activities indicating the suppression effect of AUGUAA on translation of the main ORF. Interestingly, mRNA level of the reporter gene was not affected by B in both yeast cells with and without AUGUAA. This finding reveals that in yeast, unlike the case in plants, mRNA degradation is not associated with AUGUAA regulation. Together, results suggest that B-dependent AUGUAA-mediated translational regulation is common among eukaryotes.  相似文献   

3.
Sesame lignans have antioxidative and anti‐inflammatory properties. We focused on the effects of the lignans sesamin and sesamol on the expression of endothelial‐leukocyte adhesion molecules in tumor necrosis factor‐α (TNF‐α)‐treated human aortic endothelial cells (HAECs). When HAECs were pretreated with sesamin (10 or 100 μM), the TNF‐α‐induced expression of intercellular cell adhesion molecule‐1 (ICAM‐1) was significantly reduced (35 or 70% decrease, respectively) by Western blotting. Sesamol was less effective at inhibiting ICAM‐1 expression (30% decrease at 100 μM). Sesamin and sesamol reduced the marked TNF‐α‐induced increase in human antigen R (HuR) translocation and the interaction between HuR and the 3'UTR of ICAM‐1 mRNA. Both significantly reduced the binding of monocytes to TNF‐α‐stimulated HAECs. Sesamin significantly attenuated TNF‐α‐induced ICAM‐1 expression and cell adhesion by downregulation of extracellular signal‐regulated kinase 1/2 and p38. Furthermore, in vivo, sesamin attenuated intimal thickening and ICAM‐1 expression seen in aortas of apolipoprotein‐E‐deficient mice. Taken together, these data suggest that sesamin inhibits TNF‐α‐induced extracellular signal‐regulated kinase/p38 phosphorylation, nuclear translocation of NF‐κB p65, cytoplasmic translocalization of HuR and thereby suppresses ICAM‐1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that sesamin may prevent the development of atherosclerosis and inflammatory responses.  相似文献   

4.
5.
6.
DNA microarray for comparative genome hybridization (CGH) of bottom‐fermenting yeast was performed based on our in‐house DNA sequence data. Aneuploidy, copy number variation and unique chromosomal structures were observed among bottom‐fermenting yeast strains. Our array experiments revealed a correlation between copy number variation and mRNA expression levels. Chromosomal structures in a Saccharomyces carlsbergensis‐type strain and in a S. monacensis‐type strain that both belong to S. pastorianus phylogenetically differed greatly from those in contemporary industrial bottom‐fermenting yeast strains. The knowledge gained in this study contributes to a more precise genomic characterization of bottom‐fermenting yeast strains. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

7.
Here we expand the set of tools for genetically manipulating Saccharomyces cerevisiae. We show that puromycin‐resistance can be achieved in yeast through expression of a bacterial puromycin‐resistance gene optimized to the yeast codon bias, which in turn serves as an easy‐to‐use dominant genetic marker suitable for gene disruption. We have constructed a similar DNA cassette expressing yeast codon‐optimized mutant human dihydrofolate reductase (DHFR), which confers resistance to methotrexate and can also be used as a dominant selectable marker. Both of these drug‐resistant marker cassettes are flanked by loxP sites, allowing for their excision from the genome following expression of Cre‐recombinase. Finally, we have created a series of plasmids for low‐level constitutive expression of Cre‐recombinase in yeast that allows for efficient excision of loxP‐flanked markers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
While using YIp356 and YEp356R lacZ reporter plasmids, we found lacZ expression driven by the ARG2 promoter to be much higher in cells grown on a non‐glucose carbon source than in glucose‐grown cells (5–10‐fold higher on galactose and up to 40‐fold higher on ethanol). Furthermore, expression increased 30‐fold upon shifting from a high‐glucose to a low‐glucose medium. This carbon source regulation requires Snf1p and possibly Ssn6p. It appears, however, to be artefactually mediated by plasmid sequences located upstream from the multicloning site. This emerged from the following observations: (a) the derepressive effect disappears if any extra piece of DNA is inserted upstream from the ARG2 promoter; and (b) similar derepression on low glucose is observed with another yeast promoter (ARG11), provided that the flanking 5′ region is short. We determined that the cis‐elements responsible for this physiologically irrelevant glucose regulation are located between positions 636 and 879 of the pUC18 DNA sequence. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon‐optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half‐lives of 40 and 5 min, respectively. The commercial substrate Nano‐Glo® is compatible with detection of yNluc bioluminescence in < 50 cells. Using the unstable yNlucPEST to report on the rapid and transient expression of a heat‐shock promoter (PCYC1–HSE), we found a close match between the intensity of the bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C‐terminus of a temperature‐sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.  相似文献   

10.
11.
Understanding the molecular events underlying gene regulation by amino acids has attracted increasing attention. Here, we explored whether the mechanism by which methionine restriction affects the expression of the π class of glutathione S‐transferase (GSTP) is related to oxidative stress initiated by glutathione (GSH) depletion. Rat primary hepatocytes were cultured in an L‐15‐based medium in the absence or presence of 200 μM L ‐buthionine sulfoximine (BSO) or in a methionine‐restricted L‐15 medium supplemented with 20 μM L ‐methionine up to 72 h. BSO and methionine restriction time‐dependently induced GSTP mRNA and protein expression in a similar pattern accompanied by a decrease in the cellular GSH level. The phosphorylation of extracellular signal‐regulated kinase (ERK), but not of c‐Jun NH2‐terminal kinase and p38, was stimulated by methionine restriction and BSO. Electromobility gel shift assay showed that the DNA‐binding activity of nuclear activator protein‐1 (AP‐1) increased in cells exposed to methionine restriction or BSO. With the ERK inhibitor FR180204, AP‐1 activation and GSTP expression were abolished. Moreover, the induction of GSTP by methionine restriction and BSO was reversed by GSH monoethyl ester and N‐acetylcysteine. Our results suggest that methionine restriction up‐regulates GSTP gene expression, which appears to be initiated by the ERK‐AP‐1 signaling pathway through GSH depletion in rat hepatocytes.  相似文献   

12.
13.
Protective effects of caffeic acid (CA) and ellagic acid (EA) in kidney of diabetic mice were examined. CA or EA at 2.5 and 5% was mixed in diet and supplied to diabetic mice for 12 wk. Results showed that the intake of CA or EA increased renal content of these compounds, alleviated body weight loss, decreased urine output, increased plasma insulin and decreased blood glucose levels at weeks 6 and 12 (p<0.05). The intake of these compounds dose dependently reduced plasma blood urea nitrogen and elevated creatinine clearance (p<0.05). CA or EA at 5% significantly decreased the levels of plasma HbA1c, urinary glycated albumin, renal carboxymethyllysine, pentosidine, sorbitol and fructose (p<0.05), and significantly diminished renal activity of aldose reductase and sorbitol dehydrogenase, as well as suppressed renal aldose reductase mRNA expression (p<0.05). CA or EA dose dependently lowered renal levels of IL‐6, IL‐1β, tumor necrosis factor (TNF)‐α and monocyte chemoattractant protein 1 (MCP‐1) (p<0.05). Furthermore, CA or EA dose dependently down‐regulated tumor necrosis factor‐α and monocyte chemoattractant protein‐1 mRNA expression in kidney (p<0.05). Based on the observed anti‐glycative and anti‐inflammatory effects, the supplement of CA or EA might be helpful for the prevention or attenuation of diabetic kidney diseases.  相似文献   

14.
The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most frequent systemic mycosis in Latin America. Our group has been working with paracoccin, a P. brasiliensis lectin with MM 70 kDa, which is purified by affinity with immobilized N‐acetylglucosamine (GlcNAc). Paracoccin has been described to play a role in fungal adhesion to extracellular matrix components and to induce high and persistent levels of TNFα and nitric oxide production by macrophages. In the cell wall, paracoccin colocalizes with the β‐1,4‐homopolymer of GlcNAc into the budding sites of the P. brasiliensis yeast cell. In this paper we present a protocol for the chitin‐affinity purification of paracoccin. This procedure provided higher yields than those achieved by means of the technique based on the affinity of this lectin with GlcNAc and had an impact on downstream assays. SDS–PAGE and Western blot analysis revealed similarities between the N‐acetylglucosamine‐ and chitin‐bound fractions, confirmed by MALDI–TOF–MS of trypsinic peptides. Western blot of two‐dimensional gel electrophoresis of the yeast extract showed a major spot with Mr 70 000 and pI approximately 5.63. Morevover, an N‐acetyl‐β‐D ‐glucosaminidase activity was reported for paracoccin, thereby providing new insights into the mechanisms that lead to cell wall remodelling and opening new perspectives for its structural characterization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Bax, a multidomain pro‐apoptotic Bcl‐2 protein, localizes to the endoplasmic reticulum (ER), where it regulates ER stress‐induced apoptosis. Adaptation to ER stress depends on the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). This study examined the death‐inducing activity of Bax and its ability to induce UPR signalling pathways in yeast. We observed that inhibition of global translation in yeast cells expressing Bax correlated with Bax‐induced cell death. Using a lacZ reporter containing several UPR cis‐activating regulatory elements, we also found that Bax directly activated the UPR. Furthermore, this correlated with the splicing of HAC1 mRNA, a gene involved in UPR activation. Bax induced expression of representative UPR target genes such as KAR2, DER1 and GCN4. Finally, we found that Ire1p function is critical for Bax‐induced cell death. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Pichia pastoris is a popular host organism for expressing heterologous proteins, and various expression vectors for this yeast are currently available. Recently, vectors containing novel dominant antibiotic resistance markers have become a strong and developing field of research for this methylotropic yeast strain. We have developed new P. pastoris expression vectors, the pPICKanMX6 and pPICKanMX6α series. These vectors were constructed by replacing the zeocin resistance gene of the pPICZA, B, C and pPICZαA, B and C vectors with the Tn903 kanR marker from pFA6a KanMX6, which confers G‐418 sulphate resistance in P. pastoris. The limits of antibiotic resistance in two transformant yeast strains were investigated, and the selection marker was shown to be stably retained. To demonstrate their usefulness, a gene encoding hexa‐histidine‐tagged green fluorescent protein (GFPH6) was cloned into one of the new vectors and GFP expression examined in P. pastoris cells. The protein expression levels using the pPICKanMX6B vector were comparable with that using the original plasmid, based on zeocin resistance as seen by yeast cell fluorescence. Moreover, GFPH6 was able to be isolated by immobilized metal ion affinity chromatography (IMAC) from lysates of both yeast strains. A model reporter construct has been used to demonstrate successful recombinant protein expression and its subsequent purification using these new vectors. Corresponding vectors can now also be engineered with foreign gene expression under the control of various different promoters, to increase the flexibility of P. pastoris as a cellular factory for heterologous protein production. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We here describe an IPTG‐inducible system that reveals that the lac repressor alone can function as a potent transmodulator to regulate gene expression in the fission yeast, Schizosaccharomyces pombe. This expression system is a derivative of the Sz. pombe nmt promoter, which normally is strongly repressed by thiamine. With appropriate positioning of a lac operator site (lacO) downstream of the TATA‐box, we show that gene expression from a chimeric nmt::lacO promoter can be regulated by the lac repressor up to two orders of magnitude in response to IPTG. The chimeric nmt::lacO promoter is rapidly induced and when GFP is used as a reporter; almost full induction is achieved 40 min after the addition of IPTG. Like the wild‐type nmt promoter, the chimeric nmt::lacO is repressed by thiamine. This allows expression in a short and defined window, e.g. the S‐phase of a synchronized cell population, by first adding IPTG to turn on expression, followed by addition of thiamine to switch off expression. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号