首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
In Escherichia coli, flavodoxin is the physiological electron donor for the reductive activation of the enzymes pyruvate formate-lyase, anaerobic ribonucleotide reductase, and B12-dependent methionine synthase. As a basis for studies of the interactions of flavodoxin with methionine synthase, crystal structures of orthorhombic and trigonal forms of oxidized recombinant flavodoxin from E. coli have been determined. The orthorhombic form (space group P2(1)2(1)2(1), a = 126.4, b = 41.10, c = 69.15 A, with two molecules per asymmetric unit) was solved initially by molecular replacement at a resolution of 3.0 A, using coordinates from the structure of the flavodoxin from Synechococcus PCC 7942 (Anacystis nidulans). Data extending to 1.8-A resolution were collected at 140 K and the structure was refined to an Rwork of 0.196 and an Rfree of 0.250 for reflections with I > 0. The final model contains 3,224 non-hydrogen atoms per asymmetric unit, including 62 flavin mononucleotide (FMN) atoms, 354 water molecules, four calcium ions, four sodium ions, two chloride ions, and two Bis-Tris buffer molecules. The structure of the protein in the trigonal form (space group P312, a = 78.83, c = 52.07 A) was solved by molecular replacement using the coordinates from the orthorhombic structure, and was refined with all data from 10.0 to 2.6 A (R = 0.191; Rfree = 0.249). The sequence Tyr 58-Tyr 59, in a bend near the FMN, has so far been found only in the flavodoxins from E. coli and Haemophilus influenzae, and may be important in interactions of flavodoxin with its partners in activation reactions. The tyrosine residues in this bend are influenced by intermolecular contacts and adopt different orientations in the two crystal forms. Structural comparisons with flavodoxins from Synechococcus PCC 7942 and Anaebaena PCC 7120 suggest other residues that may also be critical for recognition by methionine synthase.  相似文献   

2.
The calmodulin- and calcium-stimulated protein phosphatase calcineurin, PP2B, consists of two subunits: calcineurin B, which binds Ca2+, and calcineurin A, which contains the catalytic site and a calmodulin binding site. Heteronuclear 3D and 4D NMR experiments were carried out on a recombinant human calcineurin B which is a 170-residue protein of molecular mass 19.3 kDa, uniformly labeled with 15N and 13C. The nondenaturing detergent CHAPS was used to obtain a monomeric form of calcineurin B. Three-dimensional triple resonance experiments yielded complete sequential assignment of the backbone nuclei (1H, 13C, and 15N). This assignment was verified by a 4D HN(COCA)NH experiment carried out with 50% randomly deuteriated and uniformly 15N- and 13C-enriched calcineurin B. The secondary structure of calcineurin B has been determined on the basis of the 13C alpha and 13C beta secondary chemical shifts, J(HNH alpha) couplings, and NOE connectivities obtained from 3D 15N-separated and 4D 13C/15N-separated NOESY spectra. Calcineurin B has eight helices distributed in four EF-hand, helix-loop-helix [Kretsinger, R. H. (1980) CRC Crit. Rev. Biochem. 8, 119-174] calcium binding domains. The secondary structure of calcineurin B is highly homologous to that of calmodulin. In comparison to calmodulin, helices B and C are shorter while helix G is considerably longer. As was observed for calmodulin in solution, calcineurin B does not have a single long central helix; rather, helices D and E are separated by a six-residue sequence in a flexible nonhelical conformation.  相似文献   

3.
4E binding protein 1 (4E-BP1) inhibits translation by binding to the initiation factor eIF4E and is mostly or completely unstructured in both free and bound states. We wished to determine whether the free protein has local structure that could be involved in eIF4E binding. Assignments were obtained using double and triple resonance NMR methods. Residues 4-10, 43-46, and 56-65 could not be assigned, primarily because of a high degree of 1H and 15N chemical shift overlap. Steady-state ?1H?-15N NOEs were measured for 45 residues in the assigned regions. Except for the two C-terminal residues, the NOEs were between -0.77 and - 1.14, indicating a high level of flexibility. Furthermore, the ?1H?-15N NOE spectrum recorded with presaturation contained no strong positive signals, making it likely that no other residues have positive or smaller negative NOEs. This implies that 4E-BP1 has no regions of local order in the absence of eIF4E. The interaction therefore appears to be an induced fit to a completely disordered protein molecule.  相似文献   

4.
Two mutants of the Desulfovibrio vulgaris flavodoxin, T12H and N14H, were generated which, for the first time, place a basic residue within the normally neutral 5'-phosphate binding loop of the flavin mononucleotide cofactor binding site found in all flavodoxins. These histidine residues were designed to form an ion pair with the dianionic 5'-phosphate, either altering its ionization state or offsetting its negative charge to allow evaluation of the magnitude of its electrostatic effect on the redox properties of the cofactor. The midpoint potential for the oxidized/semiquinone couple was not significantly altered in either mutant. However, the midpoint potentials for the semiquinone/hydroquinone couple (Esq/hq) were less negative than that of the wild type, increasing by 28 and 15 mV relative to that of the wild type for the T12H and N14H mutants, respectively, at pH 6. 31P NMR spectroscopy suggests that, just as for wild type, the phosphate group in each mutant does not change its ionization state between pH 6 and 8. Therefore, the small increases in midpoint potential must be linked to the protonation of the histidine residues, either through favorable interactions with the anionic hydroquinone or by the partial compensation of the charge on the 5'-phosphate. Values for the pKa of His12 and His14 in the oxidized flavodoxin were determined by 1H NMR spectroscopy to be 6.71 and 6.93, respectively, which are only modestly elevated relative to the average value for histidines in proteins. This suggests that the histidines do not form strong ion-pairing interactions with the phosphate and/or that the effective charge on the 5'-phosphate may be substantially less than the reported formal dianionic charge. Either way, the data provide evidence for the rather weak electrostatic interaction between a charged group at this site and the anionic flavin hydroquinone. In contrast, Esq/hq reported for the apoflavodoxin-riboflavin complex, which lacks the 5'-phosphate group, is 180 mV less negative than that of the native flavodoxin. The re-evaluation of the redox and cofactor binding properties of the riboflavin complex generated values for the dissociation constants for the riboflavin complex in the oxidized, semiquinone, and hydroquinone oxidation states that are 2100-, 63000-, and 54-fold higher, respectively, than that for the naturally occurring flavin mononucleotide complex. The large redox potential shifts observed for both redox couples in the riboflavin complex are primarily the consequence of a decreased stabilization of the semiquinone rather than the result of the absence of the negative charge of the 5'-phosphate. It is concluded from this study that the negative charge on the phosphate group of the cofactor does not play a disproportionate role in decreasing Esq/hq, at most contributing equivalently with the acidic amino acid residues clustered around the flavin to an unfavorable electrostatic environment for the formation of the flavin hydroquinone anion.  相似文献   

5.
The three-dimensional solution structure of the 259-residue 30 kDa N-terminal domain of enzyme I (EIN) of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli has been determined by multidimensional nuclear magnetic resonance spectroscopy. Enzyme I, which is autophosphorylated by phosphoenolpyruvate, reversibly phosphorylates the phosphocarrier protein HPr, which in turn phosphorylates a group of membrane-associated proteins, known as enzymes II. To facilitate and confirm NH, 15N, and 13C assignments, extensive use was made of perdeuterated 15N- and 15N/13C-labeled protein to narrow line widths. Ninety-eight percent of the 1H, 15N, and 13C assignments for the backbone and first side chain atoms of protonated EIN were obtained using a combination of double and triple resonance correlation experiments. The structure determination was based on a total of 4251 experimental NMR restraints, and the precision of the coordinates for the final 50 simulated annealing structures is 0.79 +/- 0.18 A for the backbone atoms and 1.06 +/- 0.15 A for all atoms. The structure is ellipsoidal in shape, approximately 78 A long and 32 A wide, and comprises two domains: an alpha/beta domain (residues 1-20 and 148-230) consisting of six strands and three helices and an alpha-domain (residues 33-143) consisting of four helices. The two domains are connected by two linkers (residues 21-32 and 144-147), and in addition, at the C-terminus there is another helix which serves as a linker between the N- and C-terminal domains of intact enzyme I. A comparison with the recently solved X-ray structure of EIN [Liao, D.-I., Silverton, E., Seok, Y.-J., Lee, B. R., Peterkofsky, A., & Davies, D. R. (1996) Structure 4, 861-872] indicates that there are no significant differences between the solution and crystal structures within the errors of the coordinates. The active site His189 is located in a cleft at the junction of the alpha and alpha/beta domains and has a pKa of approximately 6.3. His189 has a trans conformation about chi1, a g+ conformation about chi2, and its Nepsilon2 atom accepts a hydrogen bond from the hydroxyl proton of Thr168. Since His189 is thought to be phosphorylated at the N epsilon2 position, its side chain conformation would have to change upon phosphorylation.  相似文献   

6.
The crystal structures of the flavodoxin from Desulfovibrio desulfuricans ATCC 27774 have been determined and refined for both oxidized and semi-reduced forms to final crystallographic R-factors of 17.9% (0.8-0.205-nm resolution) and 19.4% (0.8-0.215-nm resolution) respectively. Native flavodoxin crystals were grown from ammonium sulfate with cell constants a = b = 9.59 nm, c=3.37nm (oxidized crystals) and they belong to space group P3(2)21. Semireduced crystals showed some changes in cell dimensions: a = b = 9.51 nm, c=3.35 nm. The three-dimensional structures are similar to other known flavodoxins and deviations are found essentially in the isoalloxazine ring environment. Conformational changes are observed between both redox states and a flip of the Gly61-Met62 peptide bond occurs upon one-electron reduction of the FMN group. These changes influence the redox potential of the oxidized/semiquinone couple. Modulation of the redox potentials is known to be related to the association constant of the FMN group to the protein. The flavodoxin from D. desulfuricans now studied has a large span between E2 (oxidized --> semiquinone) and E1 (semiquinone --> hydroquinone) redox potentials, both these values being substantially more positive within known flavodoxins. A comparison of their FMN environment was made in both oxidation states in order to correlate functional and structural differences.  相似文献   

7.
Escherichia coli thioesterase/protease I is a 183 amino acid protein with a molecular mass of 20,500. This protein belongs to a new subclass of lipolytic enzymes of the serine protease superfamily, but with a new GDSLS consensus motif, of which no structure has yet been determined. The protein forms a tetramer at pH values above 6.5 and exists as a monomer at lower pH values. Both monomer and tetramer are catalytically active. From analysis of a set of heteronuclear multidimensional NMR spectra with uniform and specific amino acid labeled protein samples, we have obtained near-complete resonance assignments of the backbone 1H, 13C and 15N nuclei (BMRB databank accession number 4060). The secondary structure of E. coli thioesterase/protease I was further deduced from the consensus chemical shift indices, backbone short- and medium-range NOEs, and amide proton exchange rates. The protein was found to consist of four beta-strands and seven alpha-helices, arranged in alternate order. The four beta-strands were shown to form a parallel beta-sheet. The topological arrangement of the beta-strands of -1x, +2x, +1x appears to resemble that of the core region of the alpha beta hydrolase superfamily, typically found in common lipases and esterases. However, substantial differences, such as the number of beta-strands and the location of the catalytic triad residues, make it difficult to give a definitive classification of the structure of E. coli thioesterase/protease I at present.  相似文献   

8.
Two soluble flavoproteins, purified from Escherichia coli cytosol and identified as flavodoxin and NADPH-flavodoxin (ferredoxin) reductase (flavodoxin reductase), have been found in combination to support the 17 alpha-hydroxylase activities of heterologously expressed bovine 17 alpha-hydroxylase cytochrome P450 (P450c17). Physical characteristics of the two flavoproteins including absorbance spectra, molecular weights, and amino-terminal sequences are identical with those reported previously for E. coli flavodoxin and flavodoxin reductase. Flavodoxin reductase, possessing FAD as a cofactor, is able to reconstitute P450c17 activities only in the presence of flavodoxin, an FMN-containing protein, and NAD(P)H. Reducing equivalents are utilized more effectively from NADPH than NADH by flavodoxin reductase. E. coli flavodoxin binds P450c17 directly and with relatively high affinity (apparent Ks approximately 0.2 microM) at low ionic strength, as evidenced by a change in spin state of the P450c17 heme iron upon titration with flavodoxin. This apparent spin shift is attenuated at moderate ionic strengths (100-200 mM KCl). In addition, bovine P450c17 binds reversibly to flavodoxin Sepharose in an ionic strength-dependent manner. These data implicate charge pairing as being important for the interaction between flavodoxin and P450c17. We propose that the amino acid sequence similarity between E. coli flavodoxin-flavodoxin reductase and the putative FMN, FAD, and NAD(P)H binding regions of cytochrome P450 reductase provides the basis for the reconstitution of P450c17 activities by this bacterial system.  相似文献   

9.
Flavodoxins are electron transfer proteins that carry a noncovalently bound flavin mononucleotide molecule as the redox-active center. The redox potentials of the flavin nucleotide are profoundly altered upon interaction with the protein. In Anabaena flavodoxin, as in many flavodoxins, the flavin is sandwiched between two aromatic residues (Trp57 and Tyr94) thought to be implicated in the alteration of the redox potentials. We have individually replaced these two residues by each of the other aromatic residues, by alanine and by leucine. For each mutant, we have determined the redox potentials and the binding energies of the oxidized FMN--apoflavodoxin complexes. From these data, the binding energies of the semireduced and reduced complexes have been calculated. Comparison of the binding energies of wild-type and mutant flavodoxins at the three redox states suggests that the interaction between Tyr94 and FMN stabilizes the apoflavodoxin--FMN complex in all redox states. The oxidized and semireduced complexes are, however, more strongly stabilized than the reduced complex, making the semiquinone/hydroquinone midpoint potential more negative in flavodoxin than in unbound FMN. Trp57 also stabilizes all redox forms of FMN, thus cooperating with Tyr94 in strong FMN binding. On the other hand, Trp57 seems to slightly destabilize the semireduced complex relative to the oxidized one. Finally, we have observed that reduction of mutants lacking Trp57 is slow relative to that of wild-type or mutants lacking Tyr94, which suggests that Trp57 could play a role in the kinetics of flavodoxin redox reactions.  相似文献   

10.
The fructose transporter of the Bacillus subtilis phosphotransferase system consists of two membrane associated (IIA and IIB) and two transmembrane (IIC and IID) subunits [Martin-Verstraete, I., Débarbouille, M., Klier, A. & Rapoport, G. (1990) J. Mol. Biol. 214, 657-671] . It mediates uptake by a mechanism which couples translocation to phosphorylation of the transported solute. The 18-kDa IIBLev subunit transfers phosphoryl groups from His9 of the IIA subunit to the sugar. The three-dimensional structure of IIBLev or similar proteins is not known. IIBLev was overexpressed in Escherichia coli and isotopically labelled with 13C/15N in H2O as well as in 70% D2O. 15N-edited NOESY, 13C-edited NOESY and 13C,15N triple-resonance experiments yielded a nearly complete assignment of the 1H, 13C and 15N resonances. Based on qualitative interpretation of NOE, scalar couplings, chemical shift values and amide exchange data, the secondary structure and topology of IIBLev was determined. IIBLev comprises six parallel beta-strands, one antiparallel beta-strand and 5 alpha-helices. The order of the major secondary-structure elements is (beta alpha)5beta (strand order 7651423). Assuming that the (beta alpha beta)-motives form right-handed turn structures, helices alphaA and alphaB are packed to one face and helices alphaC, alphaD and alphaE to the opposite face of the parallel beta-sheet. His15 which is transiently phosphorylated during catalysis is located in the loop beta1/alphaA of the topological switch point. The amino terminal (beta/alpha)4 part of IIBLev has the same topology as phosphoglyceromutase (PGM; PDB entry 3pgm). Both proteins catalyze phosphoryltransfer reactions which proceed through phosphohistidine intermediates and they show a similar distribution of invariant residues in the topologically equivalent positions of their active sites. The protein fold of IIBLev has no similarity to any of the known structures of other phosphoenolpyruvate-dependent-carbohydrate-phosphotransferase-system proteins.  相似文献   

11.
Leukemia inhibitory factor (LIF) is a hematopoietic cytokine which elicits its effects on diverse cell types via both gp130 and a more specific LIF receptor. Recombinant murine LIF was studied by multidimensional homonuclear and 1H-15N heteronuclear NMR and 95% of backbone amide resonances assigned. Definition of the secondary structure by chemical shift data and NOE connectivities shows a four-alpha-helix bundle fold (helices A-D) in solution, with an additional flexible turn of helix in the AB loop. Subtle differences are seen in the conformations of helices A and D from those defined in the crystal structure [Robinson, R. C., Grey, L. M., Staunton, D., Vankelcom, H., Vernallis, A. B., Moreau, J.-F., Stuart, D. I., Heath, J. K., & Jones, E. Y. (1994) Cell77, 1101-1116]. The dynamics of the polypeptide backbone of LIF were assessed from 15N T1 and T2 relaxation times and 15N-1H heteronuclear NOEs of the amide groups. Using model-free formalism, the overall rotational correlation time of LIF in solution is calculated to be 9.7 ps. The four alpha-helices are relatively rigid, and high mobility is observed for N-terminal residues (Ser 1-Asn 21) and the AB loop. In contrast to several closely related cytokines, the long CD loop is relatively rigid. This may have implications for interactions with the specific LIF receptor, which binds in this region.  相似文献   

12.
13.
14.
15.
The functions of the C5a anaphylatoxin are expressed through its interaction with a cell-surface receptor with seven transmembrane helices. The interaction of C5a with the receptor has been explained by a two-site model whereby recognition and effector sites on C5a bind, respectively, to recognition and effector domains on the receptor, leading to receptor activation (Chenoweth, D. E., and Hugli, T. E. (1980) Mol. Immunol. 17, 151-161. In addition, the extracellular N-terminal region of the C5a receptor has been implicated as the recognition domain for C5a, responsible for approximately 50% of the binding energy of the C5a-receptor complex (Mery, L., and Boulay, F. (1994) J. Biol. Chem. 269, 3457-3463; DeMartino, J. A., Van Riper, G., Siciliano, S. J., Molineaux, C. J., Konteatis, Z. D., Rosen, H., and Springer, M. S. (1994) J. Biol. Chem. 269, 14446-14450). In this work, the interactions of C5a with the N-terminal domain of the C5a receptor were examined by use of recombinant human C5a molecules and peptide fragments M1NSFN5YTTPD10YGHYD15DKDTL20DLNTP25VDKTS30NTLR(hC5aRF-1-34), acetyl-HYD15DKDTL20DLNTP25VDKTS30NTLR (hC5aRF-13-34), and acetyl-TL20DLNTP25VDKTS30N-amide (hC5aRF-19-31) derived from human C5a receptor. Binding induced resonance perturbations in the NMR spectra of the receptor fragments and the C5a molecules indicated that the isolated Nterminal domain or residues 1-34 of the C5a receptor retain specific binding to C5a and to a C5a analog devoid of the agonistic C-terminal tail in the intact C5a. Residues of C5a perturbed by the binding of the receptor peptides are localized within the helical core of the C5a structure, in agreement with the results from functional studies employing mutated C5a and intact receptor molecules. All three receptor peptides, hC5aRF-1-34, hC5aRF-13-34, and hC5aRF-19-31, responded to the binding of C5a through the 21-30 region containing either hydrophobic, polar, or positively charged residues such as Thr24, Pro25, Val26, Lys28, Thr29, and Ser30. The 21-30 segment of all three receptor fragments was found to have a partially folded conformation in solution, independent of residues 1-18. These results indicate that a short peptide sequence, or residues 21-30, of the C5a receptor N terminus may constitute the binding domain for the recognition site on C5a.  相似文献   

16.
The solution conformations of the intramolecular triple helices d(AGAAGA-X-TCTTCT-X-TC+TTC+T) and d(AAGGAA-X-TTCCTT-X-TTC+C+TT) (X = non-nucleotide linker) have been determined by NMR.1H NMR spectra in H2O showed that the third strand cytosine residues are fully paired with the guanine residues, each using two Hoogsteen hydrogen bonds. Determination of the13C chemical shifts of the cytosine C6 and C5 and their one-bond coupling constants (1 J CH) conclusively showed that the Hoogsteen cytosine residues are protonated at N3. The global conformations of the two molecules determined with >19 restraints per residue are very similar (RMSD = 0.96 A). However, some differences in local conformation and dynamics were observed for the central two base triplets of the two molecules. The C N3H were less labile in adjacent CG.C+triplets than in non-adjacent ones, indicating that the adjacent charge does not kinetically destabilize these triplets. The sugar conformations of the two adjacent cytosine residues were different and the 5'-residue was atypical of protonated cytosine. Hence, there are subtle effects of the interaction between two adjacent cytosine residues. The central two purines in each sequence showed non-standard backbone conformations, averaging between gamma approximately 60 degrees and gamma approximately 180 degrees. This may be related to the difference in the dependence of the thermodynamic stability on pH observed for these two sequences.  相似文献   

17.
DsbA is the strongest protein disulfide oxidant yet known and is involved in catalyzing protein folding in the bacterial periplasm. Its strong oxidizing power has been attributed to the lowered pKa of its reactive active site cysteine and to the difference in thermodynamic stability between the oxidized and the reduced form. However, no structural data are available for the reduced state. Therefore, an NMR study of DsbA in its two redox states was undertaken. We report here the backbone 1HN, 15N, 13C(alpha) 13CO, 1H(alpha), and 13Cbeta NMR assignments for both oxidized and reduced Escherichia coli DsbA (189 residues). Ninety-nine percent of the frequencies were assigned using a combination of triple (1H-13C-15N) and double resonance (1H-15N or 1H-13C) experiments. Secondary structures were established using the CSI (Chemical Shift Index) method, NOE connectivity patterns, 3(J)H(N)H(alpha) and amide proton exchange data. Comparison of chemical shifts for both forms reveals four regions of the protein, which undergo some changes in the electronic environment. These regions are around the active site (residues 26 to 43), around His60 and Pro 151, and also around Gln97. Both the number and the amplitude of observed chemical shift variations are more substantial in DsbA than in E. coli thioredoxin. Large 13C(alpha) chemical shift variations for residues of the active site and residues Phe28, Tyr34, Phe36, Ile42, Ser43, and Lys98 suggest that the backbone conformation of these residues is affected upon reduction.  相似文献   

18.
The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic rings and the subsequent resolution and identification of their associated NOEs, however, can be a difficult task. Shown here is a strategy for assigning the 1H, 13C, and 15N signals from the aromatic side chains of histidine, tryptophan, tyrosine, and phenylalanine using a suite of homo- and hetero-nuclear scalar and NOE correlation experiments, as well as selective deuterium isotope labelling. In addition, a comparison of NOE information obtained from homonuclear NOE spectroscopy (NOESY) and 13C-edited NOESY-heteronuclear single quantum correlation experiments indicates that high-resolution homonuclear two-dimensional NOESY spectra of selectively deuterated proteins are invaluable for obtaining distance restraints to the aromatic residues.  相似文献   

19.
The lac permease of E. coli is a paradigm for secondary active transporter proteins that transduce the free energy stored in electrochemical ion gradients into work in the form of a concentration gradient. This hydrophobic, polytopic, cytoplasmic membrane protein catalyses the coupled, stoichiometric translocation of beta-galactosides and H+, and it has been solubilized, purified, reconstituted into artificial phospholipid vesicles and shown to be solely responsible responsible for beta-galactoside transport as a monomer. The lacY gene which encodes the permease has been cloned and sequenced, and all available evidence indicates that the protein has 12 transmembrane domains in alpha-helical configuration that traverse the membrane in zigzag fashion connected by hydrophilic loops with the N and C termini on the cytoplasmic face of the membrane. Extensive use of site-directed and Cys-scanning mutagenesis indicates that very few residues in the permease are directly involved in the transport mechanism, but the permease appears to be a highly flexible protein that undergoes widespread conformational changes during turnover. Based on a variety of site-directed approaches which include second-site suppressor analysis and site-directed mutagenesis, excimer fluorescence, engineered divalent metal binding sites, chemical cleavage, EPR, thiol crosslinking and identification of discontinuous mAb epitopes, a helix packing model has been formulated.A mechanism for the coupled translocate ion of substrate and H+ by the lac permease of E. coli is proposed. Four residues are irreplaceable with respect to coupling, and the residues are paired in the tertiary structure--Arg-302 (helix IX) with Glu-325 (helix 10) and His-322 (helix 10) with Glu-269 (helix VIII). In an adjacent region of the molecule at the interface between helices VIII and V is the substrate translocation pathway in which Glu-126 and Arg-144 appear to play key roles. Because of this arrangement, interfacial changes between helices VIII and V are transmitted to the interface between helices IX and X and vice versa. Upon ligand binding, a structural change at the interface between helices V and VIII disrupts the interaction between Glu-269 and His-322, Glu-269 displaces Glu-325 from Ag-302 and Glu-325 is protonated.Simultaneously, protonated Glu-325 becomes inaccessible to water which drastically increases its pKa. In this configuration, the permease undergoes a freely reversible conformational change that corresponds to translocation of the ternary complex. In order to return to ground state after release of substrate, the Arg-302-Glu-325 interaction must be reestablished which necessitates loss of H+ from Glu-325. The H+ is released into a water-filled crevice between helices IX and X which becomes transiently accessible to both sides of the membrane due to a change in helix tilt, where it is acted upon equally by either the membrane potential or the pH gradient across the membrane. Remarkably few amino-acid residues appear to be critically involved in the transport mechanism of lac permease, suggesting that relatively simple chemistry drives the mechanism. On the other hand, widespread, cooperative conformational changes appear to be involved in turnover. As a whole the data suggest that the 12 helices which comprise the permease are loosely packed with a considerable amount of water in the interstices and that surface contours are important for sliding or tilting motions that occur during turnover. This surmise coupled with the indication that few residues are essential to the mechanism is encouraging in that it suggest that the possibility that a relatively low resolution structure (i.e. helix packing) plus localization of the critical residues and the translocation pathway can provide important insights into the mechanism. (ABSTRACT TRUNCATED)  相似文献   

20.
The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 A for the backbone atoms and 1.03 A for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 A for residues 2 to 97) and shows five helices, a two stranded antiparallel beta-sheet and an omega-loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's > 12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号