首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文研究了玻纤和矿纤分别掺人钢渣、水泥复合胶凝材料时对胶砂强度和膨胀性的影响.结果表明随着钢渣掺量的提高,各龄期胶砂强度下降;随着纤维掺量的提高,胶砂试件各龄期强度下降,相比纤维掺量为0时,玻纤掺量为0.1%、0.5%时,28 d抗压强度分别提高2.36%、降低10.6%,矿纤掺量为0.1%、0.5%时,28 d抗压强度分别提高7.4%、降低17.2%.沸煮和压蒸试验结果表明,钢渣与水泥配比相同时,玻纤掺量高的试件其压蒸膨胀率低;掺入质量分数0.3%的6 mm玻纤时,试件压蒸膨胀率比纤维掺量为0时降低18.87%;掺入混合玻纤的试件其压蒸膨胀率较单掺时低.SEM显示,随着水化的进行,纤维表面生长C-S-H凝胶以及Ca(OH)2晶体,纤维与基体的粘结程度提高,矿纤与基体的表面粘结程度较玻纤高.  相似文献   

2.
钢渣矿渣掺合料对水泥性能的影响   总被引:4,自引:0,他引:4  
研究了钢渣的掺入量对水泥浆体性能的影响,以及钢渣单掺和钢渣与矿渣复掺对水泥胶砂强度的影响。结果表明:钢渣的掺入可以改善水泥浆体的流动性,凝结时间随钢渣掺量增加而延长。单掺钢渣时,水泥胶砂强度下降明显。钢渣与矿渣复掺会相互激发、相互促进水化,水泥胶砂强度变化不大,且钢渣在复合粉中的比例为20%,替代水泥量为50%时,28 d强度已超过基准样。  相似文献   

3.
石岩  王佳  陈海焱  冯启明  黄阳 《金属矿山》2014,43(7):177-180
为探究攀钢转炉钢渣作为水泥掺加料、实现钢渣高效资源化利用的可行性,以攀钢转炉钢渣和四川峨胜水泥熟料为原料,研究了不同粒度、不同掺量钢渣细粉对水泥胶凝性能的影响。结果表明:在钢渣细粉掺加量一定的情况下,掺入的钢渣细粉粒度越细,水泥的标准稠度需水量越大、初凝和终凝时间越长、水泥胶砂的强度和活性指数越高;在钢渣细粉粒度一定的情况下,水泥胶砂的强度随着钢渣细粉掺入量的增加而降低,当钢渣细粉掺入量超过钢渣复合水泥质量分数的30%时,水泥胶砂的强度将大幅下降;D50=6.21 μm和D50=3.17 μm的钢渣细粉按30%取代水泥时,钢渣复合水泥胶砂的强度和安定性均满足国家P.S.A 32.5级水泥标准要求。  相似文献   

4.
钢渣中含有C_3S、C_2S胶凝活性物质,因此经粉磨后,具有用作胶凝物质掺合料的潜质。但是钢渣的安定性差是制约其利用的最重要限制因素之一。本文分别采用沸煮和压蒸方法研究钢渣的比表面积对钢渣-水泥复合胶凝材料净浆安定性的影响;用灰色关联度分析法研究钢渣掺量与比表面积对钢渣-水泥复合胶凝材料净浆安定性的影响程度;通过SEM分析钢渣不同比表面积时,钢渣-水泥复合胶凝材料净浆的微观形貌。研究结果表明,钢渣-水泥复合胶凝材料净浆可以通过提高钢渣的比表面积改善其安定性。钢渣掺量10%时,相较于钢渣比表面积454.99 m~2/kg的钢渣-水泥复合胶凝材料净浆,钢渣比表面积为598.43 m~2·kg的钢渣-水泥复合胶凝材料净浆沸煮膨胀率降低了72.14%,压蒸膨胀率降低了51.40%。灰色关联分析得出与比表面积相比,钢渣掺量对钢渣-水泥复合胶凝材料净浆膨胀率的影响更大。限制钢渣的掺量仍是预防钢渣-水泥复合胶凝材料体积膨胀的主要方法。SEM微观结构分析表明,随着钢渣比表面积的增加,钢渣-水泥复合胶凝材料净浆逐渐趋于致密,此结论与膨胀率评价结果一致。  相似文献   

5.
在测定超细硅灰石粉特性及其胶砂强度指数的基础上,研究了超细硅灰石粉对水泥砂浆流动性、试件强度及抗化学侵蚀性能的影响。结果表明:超细硅灰石粉是长径比在(18~25)∶1的纤维状粒子,其胶砂强度指数为72.9%,将超细硅灰石粉掺入水泥基材料中能够提高水泥试件的抗折强度与折压比,但由于硅灰石粉具有较大的细度与长径比,硅灰石粉掺量超过15%时砂浆扩展度会明显降低。当硅灰石粉掺量为15%~20%范围时,在水泥试件抗压强度没有明显降低的情况下,能够提高水泥试件的抗折强度10%以上,同时折压比接近0.20,有利于改善水泥基材料的脆性。同时,硅灰石粉掺量不超过30%的水泥试件具有良好的抗化学侵蚀性能,且抗蚀系数大于0.80。  相似文献   

6.
针对钢渣的成分特点,以宁夏钢铁集团转炉钢渣为研究对象,研究了高温重构工艺条件对钢渣组成、结构的影响,并对掺入重构钢渣的水泥的力学性能进行了研究,以期为高温重构钢渣的推广应用奠定理论和技术基础。试验结果表明:(1)钢渣水泥中钢渣掺入量增加,水泥胶砂试块的强度呈先慢后快的下降趋势,钢渣的掺量超过30%后,水泥胶砂试块的强度明显下降。(2)钢渣水泥中添加适量的激发剂能提高试件的强度,以水玻璃为最好。(3)钢渣粒度的下降,钢渣水泥胶砂试块的强度明显上升,钢渣粒度由300~0μm降至75~0μm,28 d钢渣水泥胶砂试块的抗折强度由1.43 MPa提高至6.31 MPa,抗压强度由15.29 MPa提高至35.18 MPa。(4)高温重构钢渣中尖晶石相完全无水化活性,C_2F相有一定水化活性。水化产物C—S—H凝胶会对尖晶石相产生包覆,导致后者难以被进一步检测。  相似文献   

7.
在土壤固化剂固化土中加入聚丙烯纤维改善固化土的力学性能,考察了试件养护龄期、聚丙烯纤维以及固化剂掺量对固化土无侧限抗压强度和受压过程的影响.结果表明,聚丙烯纤维可有效提高固化土的无侧限抗压强度,掺量为0.1%时纤维固化土的无侧限抗压强度较同龄期未掺时提高了9.4%;随着龄期增长和固化剂掺量增加,抗压强度不断增加;聚丙烯纤维的掺入可有效提高固化土的韧性.  相似文献   

8.
超轻质水泥基复合材料(ULCC)是一种新型复合材料。通过对超轻质水泥基复合材料抗弯性能的试验研究,分析了掺入不同体积含量(0.5%,1.0%)的聚乙烯醇(PVA)纤维和钢纤维(ST)对其抗弯性能的影响。结果表明,在掺入同种纤维的情况下,1.0%体积掺量纤维掺入时,极限弯拉强度和试件吸收能量的能力都有明显的提高;在掺入同样体积掺量纤维的情况下,掺入PVA纤维时的极限弯拉强度要小于掺入钢纤维时的极限弯拉强度;1.0%体积掺量PVA纤维的掺入可以更好的提高水泥基体的抗弯抗韧性能;在保证荷载降低到同样水平的条件下,钢纤维的掺入可以在一定程度上加大试件的最终跨中挠度,掺入1.0%体积掺量纤维时,掺入钢纤维时的最终跨中挠度值要比掺入PVA纤维时高534.86%。  相似文献   

9.
针对山东烟台某金矿充填体强度低、稳定性差等问题,选用高炉矿渣、钢渣、脱硫石膏等工业固体废弃物制备胶凝材料,掺入玻璃纤维作为加筋材料以改善充填体力学性能.首先,分析充填材料的物理化学性质,然后,开展正交试验,探究纤维掺量、纤维长度和钢渣掺量对水泥基尾砂胶结充填体抗压强度、抗折强度和劈裂抗拉强度的影响.研究结果表明:随着纤维掺量的增加,充填体力学性能表现为先增加后降低的趋势,当纤维掺量为0.5%时,充填体抗压强度和抗拉强度达到最大值,当纤维掺量为0.3%时,充填体抗折强度改善效果最好;随着纤维长度的增加,充填体抗折强度和抗拉强度逐渐增大,充填体抗压强度先增加后降低,在纤维长度为6mm 时,抗压强度达到最大值;适量的纤维掺入弥补了充填体内部结构的缺陷,抑制了裂缝扩展,增加了致密度,使充填体力学性能不断上升,但过量掺入会导致纤维相互缠结形成应 力 集 中 区,削 减 了 充 填 体 力 学 性 能.钢 渣 掺 量 为10%时,充填体力学性能最优,继续增加钢渣掺量,胶凝体系中用于支撑充填体宏观强度的水化产物钙矾石、C—S(A)—H凝胶、Ca(OH)2 的生成量减少,充填体试件难以抵抗较大的荷载,充填体力学性能降低.  相似文献   

10.
为提高玄武岩纤维钢渣粉混凝土力学性能,用磁化水取代普通水来拌制混凝土,分别进行3,7,14,21和28d力学性能试验,并对混凝土早期压拉破坏形态进行分析研究。结果表明:磁化水可有效提高玄武岩纤维钢渣粉混凝土压拉强度,尤其对早期强度提高更为明显。钢渣粉掺量为18%时,混凝土3,7和14d抗压强度较玄武岩纤维钢渣粉混凝土分别提高了约14.0%,9.0%和7.3%;3,7和14d抗拉强度分别提高了约10.3%,7.2%和4.5%。混凝土早期抗压最终破坏时,试件表面无明显损坏,整体性良好;抗拉最终破坏时,试件有微小裂缝,未完全破损。  相似文献   

11.
为了提升矿用堵水注浆材料的力学性能,提出采用废弃玻璃纤维进行材料改性。通过开展单轴压缩试验探究了注浆体强度受纤维长度、掺量和养护时间的影响规律,结合损伤分析和微观图像对废弃玻璃纤维的增强机理进行探讨。结果表明:掺入玻璃纤维使注浆体的抗压强度和延性显著提高;抗压强度的增长速度随养护时间增加而下降,3d内增长速率较快,3d后趋于稳定;玻璃纤维长度对强度影响显著,短切纤维对强度增长贡献值最高;随着纤维掺量增加,强度指标呈先增后减的变化规律,当纤维掺量为0.3%~0.4%时达到最大;纤维在水泥胶砂中的桥接效应可抑制压缩裂缝的扩展,对试件破坏起到缓冲作用;当玻璃纤维的长度过大或掺量过高时会增加局部区域的孔隙率,使矿用堵水注浆体的变形和强度性能发生弱化。  相似文献   

12.
用不同掺量玄武岩石粉和粉煤灰替代水泥做水泥胶砂试验,测试抗压强度、干缩率及动弹性模量。结果表明:玄武岩石粉替代10%水泥、粉煤灰替代15%水泥时,对胶砂抗压强度影响不大;玄武岩石粉对胶砂干缩量的影响前后期变化较大,在前期24 h中,粉煤灰与玄武岩石粉胶砂干缩量相近且低于纯水泥胶砂;在后期56 d龄期内,粉煤灰胶砂干缩量整体仍然小于水泥胶砂,但玄武岩石粉胶砂干缩量在14 d左右逐渐大于水泥胶砂,且自收缩增长率变大;利用动弹性模量变化趋势可以较好地反映胶砂强度的变化趋势,其变化趋势与实际强度相近。  相似文献   

13.
采用再生砂作为砂浆组成材料中的细骨料,掺入一定量的粉煤灰替代水泥制备干混砌筑砂浆,系统研究了粉煤灰掺量及胶砂比对其基本性能和力学性能的影响。结果表明,干混砌筑砂浆的分层度、表观密度和含气量与粉煤灰掺量及胶砂比均呈线性关系,并且其抗压强度随着胶砂比的减小而逐渐降低;当胶砂比为1∶3,且粉煤灰掺量为10%时,其后期抗压强度达到最高,相比早期增大幅度达65.9%;最后,根据再生骨料干混砌筑砂浆抗压强度与粉煤灰掺量的关系曲线回归拟合出不同胶砂比条件下砂浆的抗压强度公式,以制备M10~M30不同强度等级的干混砌筑砂浆。  相似文献   

14.
崔孝炜  倪文 《金属矿山》2014,32(9):177-180
为了研究钢渣粉掺入对高强尾矿混凝土性能的影响,以比表面积为5 950 cm2/g的钢渣粉等量替代比表面积为5 137 cm2/g的基础胶凝材料(铁尾矿、矿渣、水泥熟料、天然石膏的梯级磨矿产品,各对应成分的质量比为40∶26∶26∶8)进行了胶砂流动度试验,并以等质量的原始粒级铁尾矿为骨料,进行了混凝土试件强度试验。结果表明:钢渣粉的掺入在一定程度上提高了体系的流动度;钢渣粉的掺入对混凝土早期强度有明显的负面影响;钢渣粉水化作用的缓慢、持久释放,使掺钢渣粉的混凝土后期强度显著增长,但钢渣粉的掺量不宜超过20%。试验产品的SEM分析表明,无论是否掺加钢渣粉,尾矿混凝土水化产物均为钙矾石和C-S-H凝胶;在反应的中后期,体系中C-S-H凝胶和钙矾石的协同生成能够促进体系强度的增长。  相似文献   

15.
为研究硅粉掺量对沙漠风积沙水泥基材料性能的改善效果,设计不同硅粉掺量的单因素试验进行稠度测试和抗折抗压强度测试,分析了硅粉掺量对材料稠度和力学性能的影响。结果表明:沙胶比为3,硅粉掺量为6%时,材料3 d、7 d抗压强度较基准组分别提高了61.9%、47.1%,28 d抗压强度较基准组提高了38.2%,此时折压比较大,为0.33,沙漠风积沙水泥基材料的抗压性能显著提高,且脆性较小。前期水泥基材料抗压强度增长率随硅粉掺量的增加先增大后减小,后期抗压强度增长率随硅粉掺量的增加而增大;水泥基材料抗折强度增长率随硅粉掺量的增加先增大后减小,当硅粉掺量大于10%时,材料抗折强度增长率为负,掺入过量硅粉会降低沙漠风积沙水泥基材料的抗折强度。  相似文献   

16.
在水玻璃激发偏高岭土胶凝体系中,加入不同掺量的磨细钢渣,考察不同钢渣掺量对碱激发偏高岭土基复合胶凝材料的7 d抗折、抗压强度的影响,并对其影响机理进行分析。结果表明:随着钢渣掺量的增大,碱激发偏高岭土基复合胶凝材料的7 d抗折、抗压强度呈先增大后减小的趋势;当钢渣掺量在5%时,复合材料的7 d抗折强度达到最大值8.59 MPa,相较于空白组提高了10.2%;当钢渣掺量在7.5%时,复合材料的7d抗压强度达到最大值54.81 MPa,相较于空白组提高了20.9%;钢渣中的游离氧化钙与水反应生成氢氧化钙,对偏高岭土有一定的激发效果,进而提高碱激发偏高岭土基复合胶凝材料的力学强度。  相似文献   

17.
本试验选用电解锰渣、赤泥、钢渣作为混合材制备复合胶凝材料,系统优化混合材配比,利用微量热仪法测试了不同掺量混合材的复合水泥水化热,结合复合水泥胶砂强度情况,采用X射线衍射分析了混合材对水泥早期水化及其火山灰放热行为的规律和影响机理。结果表明:当混合材掺量为50%,赤泥:电解锰渣:钢渣为1∶2∶3时,复合水泥胶砂28 d强度可达到38.6 MPa;与普通硅酸盐水泥相比,钢渣、电解锰渣、赤泥的掺入可消耗多余Ca(OH)2,有助于水泥水化产物中钙矾石的稳定,并且C-S-H凝胶矿物相发育得到一定改善。复合胶凝材料水化放热速率降低,放热峰延缓出现,放热总量显著减少。  相似文献   

18.
针对胶凝材料性质对全尾砂胶结充填材料抗压强度的影响进行了试验研究,采用压汞测孔仪(Autopore Ⅳ9500)测定了固化体的总孔隙率和孔径分布。试验结果表明:当料浆固体浓度分别为70%、78%和86%并且胶凝材料掺量10%(以总固体质量计)时,掺矿渣水泥比掺水泥的固化体抗压强度分别提高了151%、127%和90%;当料浆固体浓度为86%并且胶凝材料掺量5%、养护龄期分别为7、14和28 d时,掺矿渣水泥比掺水泥的固化体抗压强度分别提高了68%、97%和141%;当料浆固体浓度为86%并且胶凝材料掺量分别为5%、10%、20%、30%和40%时,掺矿渣水泥比掺水泥的28 d固化体抗压强度分别提高了127%、89%、10%、-12%和-21%。结合压汞测孔数据和固化体抗压强度结果,得出结论:在高水胶比材料(即水胶比大于065)中,掺矿渣水泥比掺水泥的固化体中孔径更细(即水化产物更多或更分散),导致固化体中骨料(包括填料)的黏结面积增加而增加固化体抗压强度;在低水胶比材料中,掺矿渣水泥比掺水泥的固化体中总孔隙率大幅度增加,导致固化体中骨料的黏结强度降低而降低固化体抗压强度。  相似文献   

19.
以粉煤灰掺量、比表面积、养护方式及硫酸盐质量分数为影响因素,研究掺入粉煤灰后水泥土抗压强度和抗硫酸侵蚀性的变化规律,利用扫描电镜观察粉煤灰水泥土的微观结构。结果表明,在水泥掺量20%的条件下,随粉煤灰掺量增加,水泥土各龄期抗压强度增大,但增大幅度逐渐减小。龄期7 d时,粉煤灰比表面积增大对水泥土抗压强度有显著影响,龄期28 d和60 d时,粉煤灰比表面积增大对水泥土抗压强度影响不显著。水中养护对水泥土前中期的抗压强度有促进作用,对后期强度有一定的抑制作用。在硫酸盐侵蚀条件下,随着粉煤灰掺量的增加,抗压强度逐渐增大,强度损失率逐渐下降,粉煤灰掺量为10%,水泥土在3%Na2SO4和5%Na2SO4溶液中强度损失率分别为24%、35%,相较不掺粉煤灰的水泥土抗压强度损失率降低42.1%、28.2%。微观结构显示,粉煤灰能够改善水泥土内部结构,增加结构致密性。  相似文献   

20.
在水泥粉煤灰稳定煤矸石混合料中掺加聚丙烯纤维改善其性能,在室内进行了混合料无侧限抗压强度、间接抗拉强度、抗弯拉强度及干缩性能实验,并与未掺入纤维组进行对比分析。结果表明:掺加聚丙烯纤维能够显著提高混合料后期无侧限抗压强度,但持续增加聚丙烯纤维掺量及纤维长度对提高混合料抗压强度的贡献性不大;混合料的间接抗拉强度随着纤维长度的增加呈先增后减趋势,抗弯拉强度随着纤维长度的增加呈半抛物线增长趋势,且在纤维长度一定的情况下,纤维掺量越大,抗拉强度提高效果越明显;聚丙烯纤维的掺入能够降低混合料的干缩系数及干缩应变,且在同一龄期,纤维掺量越大,混合料的干缩性能改善越明显。这为水泥粉煤灰稳定煤矸石混合料应用于路面基层提供了试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号