首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Escherichia coli DegP protein is an essential periplasmic protein for bacterial survival at high temperatures. DegP has the unusual property of working as a chaperone below 28 degrees C, but efficiently degrading unfolded proteins above 28 degrees C. Monomeric DegP contains a protease domain and two PDZ domains. It oligomerizes into a hexameric cage through the staggered association of trimers. The active sites are located in a central cavity that is only accessible laterally, and the 12 PDZ domains act as mobile sidewalls that mediate opening and closing of the gates. As access to the active sites is restricted, DegP is an example of a self-compartmentalized protease. To determine the essential elements of DegP that maintain the integrity of the hexameric cage, we constructed several deletion mutants of DegP that formed trimers rather than hexamers. We found that residues 39 to 78 within the LA loops, as well as the PDZ2 domains are essential for the integrity of the DegP hexamer. In addition, we asked whether an enclosed cavity or cage of specific dimensions is required for the protease and chaperone activities in DegP. Both activities were maintained in the trimeric DegP mutants without an enclosed cavity and in deletion DegP mutants with significantly reduced dimensions of the cage. We conclude that the functional unit for the protease and chaperone activities of DegP is a trimer and that neither a cavity of specific dimensions nor the presence of an enclosed cavity appears to be essential for the protease and chaperone activities of DegP.  相似文献   

2.
Enzymes of the ATP-independent Deg serine endopeptidase family are very flexible with regard to their substrate specificity. Some family members cleave only one substrate, while others act as general proteases on unfolded substrates. The proteolytic activity of Deg proteases is regulated by PDZ protein interaction domains. Here we characterized the HhoA protease from Synechocystis sp. strain PCC 6803 in vitro using several recombinant protein constructs. The proteolytic activity of HhoA was found to increase with temperature and basic pH and was stimulated by the addition of Mg(2+) or Ca(2+). We found that the single PDZ domain of HhoA played a critical role in regulating protease activity and in the assembly of a hexameric complex. Deletion of the PDZ domain strongly reduced proteolysis of a sterically challenging resorufin-labeled casein substrate, but unlabeled beta-casein was still degraded. Reconstitution of the purified HhoA with total membrane proteins isolated from Synechocystis sp. wild-type strain PCC 6803 and a DeltahhoA mutant resulted in specific degradation of selected proteins at elevated temperatures. We concluded that a single PDZ domain of HhoA plays a critical role in defining the protease activity and oligomerization state, combining the functions that are attributed to two PDZ domains in the homologous DegP protease from Escherichia coli. Based on this first enzymatic study of a Deg protease from cyanobacteria, we propose a general role for HhoA in the quality control of extracytoplasmic proteins, including membrane proteins, in Synechocystis sp. strain PCC 6803.  相似文献   

3.
The DegP protein, a multifunctional chaperone and protease, is essential for clearance of denatured or aggregated proteins from the inner-membrane and periplasmic space in Escherichia coli. To date, four natural targets for DegP have been described: colicin A lysis protein, pilin subunits and MalS from E. coli, and high-molecular-weight adherence proteins from Haemophilus influenzae. In vitro, DegP has shown weak protease activity with casein and several other nonnative substrates. We report here the identification of the major pilin subunit of the Pap pilus, PapA, as a natural DegP substrate and demonstrate binding and proteolysis of this substrate in vitro. Using overlapping peptide arrays, we identified three regions in PapA that are preferentially cleaved by DegP. A 7-mer peptide was found to be a suitable substrate for cleavage by DegP in vitro. In vitro proteolysis of model peptide substrates revealed that cleavage is dependent upon the presence of paired hydrophobic amino acids; moreover, cleavage was found to occur between the hydrophobic residues. Finally, we demonstrate that the conserved carboxyl-terminal sequence in pilin subunits, although not a cleavage substrate for DegP, activates the protease and we propose that the activating peptide is recognized by DegP's PDZ domains.  相似文献   

4.
The PDZ protease DegS senses mislocalized outer membrane proteins and initiates the sigmaE pathway in the bacterial periplasm. This unfolded protein response pathway is activated by processing of the anti-sigma factor RseA by DegS and other proteases acting downstream of DegS. DegS mediates the rate-limiting step of sigma E induction and its activity must be highly specific and tightly regulated. While DegS is structurally and biochemically well studied, the determinants of its pronounced substrate specificity are unknown. We therefore performed swapping experiments by introducing elements of the homologous but unspecific PDZ protease DegP. Introduction of loop L2 of DegP into DegS converted the enzyme into a non-specific protease, while swapping of PDZ domains did not. Therefore, loop L2 of the protease domain is a key determinant of substrate specificity. Interestingly, swapping of loop L2 did not affect the tight regulation of DegS. In addition, the combined introduction of loop L2 and PDZ domain 1 of DegP into DegS converted DegS even further into a DegP-like protease. These and other data suggest that homologous enzymes with distinct activities and regulatory features can be converted by simple genetic modifications.  相似文献   

5.
6.
DegP (HtrA) is a periplasmic heat shock serine protease of Escherichia coli that degrades misfolded proteins at high temperatures. Biochemical and biophysical experiments have indicated that the purified DegP exists as a hexamer. To examine whether the PDZ domains of DegP were required for oligomerization, we constructed a DegP variant lacking both PDZ domains. This truncated variant, DegPDelta, exhibited no proteolytic activity but exerted a dominant-negative effect on growth at high temperatures by interfering with the functional assembly of oligomeric DegP. Thus, the PDZ domains contain information necessary for proper assembly of the functional hexameric structure of DegP.  相似文献   

7.
DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly.  相似文献   

8.
Eukaryotic organelles have developed elaborate protein quality control systems to ensure their normal activity, among which Deg/HtrA proteases play an essential role. Plant Deg2 protease is a homologue of prokaryotic DegQ/DegP proteases and is located in the chloroplast stroma, where its proteolytic activity is required to maintain the efficiency of photosynthetic machinery during stress. Here, we demonstrate that Deg2 exhibits dual protease-chaperone activities, and we present the hexameric structure of Deg2 complexed with co-purified peptides. The structure shows that Deg2 contains a unique second PDZ domain (PDZ2) following a conventional PDZ domain (PDZ1), with PDZ2 orchestrating the cage assembly of Deg2. We discovered a conserved internal ligand for PDZ2 that mediates hexamer formation and thus locks the protease in the resting state. These findings provide insight into the diverse modes of PDZ domain-mediated regulation of Deg proteases.  相似文献   

9.
HtrA2/Omi, a mitochondrial serine protease in mammals, is important in programmed cell death. However, the underlining mechanism of HtrA2/Omi-mediated apoptosis remains unclear. Analogous to the bacterial homolog HtrA (DegP), the mature HtrA2 protein contains a central serine protease domain and a C-terminal PDZ domain. The 2.0 A crystal structure of HtrA2/Omi reveals the formation of a pyramid-shaped homotrimer mediated exclusively by the serine protease domains. The peptide-binding pocket of the PDZ domain is buried in the intimate interface between the PDZ and the protease domains. Mutational analysis reveals that the monomeric HtrA2/Omi mutants are unable to induce cell death and are deficient in protease activity. The PDZ domain modulates HtrA2/Omi-mediated cell death activity by regulating its serine protease activity. These structural and biochemical observations provide an important framework for deciphering the mechanisms of HtrA2/Omi-mediated apoptosis.  相似文献   

10.
膜间质蛋白酶(DegP),是一种广泛存在于真核生物和原核生物细胞中的蛋白。DegP同时具有酶活性和分子伴侣活性,并通过多聚体构成胶囊状结构执行其分子伴侣功能。DegP的酶活性依赖酶切位点与PDZ1结构域双重识别方式识别底物,这种识别模式被称为"分子量尺"。在革兰氏阴性菌中,DegP主要位于膜间质,通过分子伴侣活性与酶活性帮助保护错误折叠蛋白或降解变性蛋白。DegP也参与外膜蛋白的转运,是DegP胞内活性的研究重点。DegP也可以被分泌到胞外,帮助宿主对抗恶劣环境,并参与调节生物被膜的形成。本文将从DegP的结构与活性、胞内功能与胞外功能三大方面对DegP的研究进展进行总结,为革兰氏阴性菌周质中蛋白质质量控制与DegP体外功能的进一步研究提供参考。  相似文献   

11.
Iwanczyk J  Leong V  Ortega J 《PloS one》2011,6(4):e18944
Escherichia coli DegP protein is a periplasmic protein that functions both as a protease and as a chaperone. In the absence of substrate, DegP oligomerizes as a hexameric cage but in its presence DegP reorganizes into 12 and 24-mer cages with large chambers that house the substrate for degradation or refolding. Here, we studied the factors that determine the oligomeric state adopted by DegP in the presence of substrate. Using size exclusion chromatography and electron microscopy, we found that the size of the substrate molecule is the main factor conditioning the oligomeric state adopted by the enzyme. Other factors such as temperature, a major regulatory factor of the activity of this enzyme, did not influence the oligomeric state adopted by DegP. In addition, we observed that substrate concentration exerted an effect only when large substrates (full-length proteins) were used. However, small substrate molecules (peptides) always triggered the same oligomeric state regardless of their concentration. These results clarify important aspects of the regulation of the oligomeric state of DegP.  相似文献   

12.
ClpA is a ring-shaped hexameric chaperone that binds to both ends of the protease ClpP and catalyzes the ATP-dependent unfolding and translocation of substrate proteins through its central pore into the ClpP cylinder. Here we study the relevance of ATP hydrolysis in the two ATPase domains of ClpA. We designed ClpA Walker B variants lacking ATPase activity in the first (D1) or the second ATPase domain (D2) without impairing ATP binding. We found that the two ATPase domains of ClpA operate independently even in the presence of the protease ClpP or the adaptor protein ClpS. Notably, ATP hydrolysis in the first ATPase module is sufficient to process a small, single domain protein of low stability. Substrate proteins of moderate local stability were efficiently processed when D1 was inactivated. However, ATP hydrolysis in both domains was required for efficiently processing substrates of high local stability. Furthermore, we provide evidence for the ClpS-dependent directional translocation of N-end rule substrates from the N to C terminus and propose a mechanistic model for substrate handover from the adaptor protein to the chaperone.  相似文献   

13.
To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.  相似文献   

14.
The chaperone/protease DegP belongs to the HtrA superfamily and is involved in protein quality control in the periplasm of Gram-negative bacteria. In Escherichia coli, typical substrates are unfolded or misfolded globular proteins that trigger the rearrangement of inactive DegP hexamers into substrate-sequestering 12- or 24-mers 'cages' for refolding or degradation. In Bordetella pertussis, DegP(Bp) facilitates, in addition, the secretion of FHA, a long β-helical adhesin that passes through the periplasm in an extended conformation. We show that DegP(Bp) exists as soluble trimers and as a membrane-associated form. Different substrates interact differently with the distinct forms of DegP(Bp), and membrane-associated DegP(Bp) has high affinity for non-native FHA. Unlike more globular substrates, FHA does not efficiently mediate rearrangement of trimers into proteolytically active, short-lived dodecamers. In contrast to these dodecamers, membrane-associated DegP(Bp) is not committed to substrate degradation, although it is proteolytically competent. In B. pertussis, membrane-associated DegP(Bp) thus represents a specific functional form serving as a holding chaperone for client proteins including FHA. If FHA secretion is impaired, membrane-associated DegP(Bp) participates in its degradation. This form of DegP(Bp) is appropriate to handle substrates unsuitable to be sequestered in cages or non-folded, secretory proteins that must not be degraded.  相似文献   

15.
The hexameric cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding and translocation of recognized substrate proteins into the coaxially associated serine protease ClpP. Each subunit of ClpA is composed of an N-terminal domain of approximately 150 amino acids at the top of the cylinder followed by two AAA+ domains. In earlier studies, deletion of the N-domain was shown to have no effect on the rate of unfolding of substrate proteins bearing a C-terminal ssrA tag, but it did reduce the rate of degradation of these proteins (Lo, J. H., Baker, T. A., and Sauer, R. T. (2001) Protein Sci. 10, 551-559; Singh, S. K., Rozycki, J., Ortega, J., Ishikawa, T., Lo, J., Steven, A. C., and Maurizi, M. R. (2001) J. Biol. Chem. 276, 29420-29429). Here we demonstrate, using both fluorescence resonance energy transfer to measure the arrival of substrate at ClpP and competition between wild-type and an inactive mutant form of ClpP, that this effect on degradation is caused by diminished stability of the ClpA-ClpP complex during translocation and proteolysis, effectively disrupting the targeting of unfolded substrates to the protease. We have also examined two larger ssrA-tagged substrates, CFP-GFP-ssrA and luciferase-ssrA, and observed different behaviors. CFP-GFP-ssrA is not efficiently unfolded by the truncated chaperone whereas luciferase-ssrA is, suggesting that the former requires interaction with the N-domains, likely via the body of the protein, to stabilize its binding. Thus, the N-domains play a key allosteric role in complex formation with ClpP and may also have a critical role in recognizing certain tag elements and binding some substrate proteins.  相似文献   

16.
alpha-Synuclein, an acidic neuronal protein of 140 amino acids, is extremely heat-resistant and is natively unfolded. Recent studies have demonstrated that alpha-synuclein has chaperone activity both in vitro and in vivo, and that this activity is lost upon removing its C-terminal acidic tail. However, the detailed mechanism of the chaperone action of alpha-synuclein remains unknown. In this study, we investigated the molecular mechanism of the chaperone action of alpha-synuclein by analyzing the roles of its N-terminal and C-terminal domains. The N-terminal domain (residues 1-95) was found to bind to substrate proteins to form high molecular weight complexes, whereas the C-terminal acidic tail (residues 96-140) appears to be primarily involved in solubilizing the high molecular weight complexes. Because the substrate-binding domain and the solubilizing domain for chaperone function are well separated in alpha-synuclein, the N-terminal-binding domain can be substituted by other proteins or peptides. Interestingly, the resultant engineered chaperone proteins appeared to display differential efficiency and specificity in terms of the chaperone function, which depended upon the nature of the binding domain. This finding implies that the C-terminal acidic tail of alpha-synuclein can be fused with other proteins or peptides to engineer synthetic chaperones for specific purposes.  相似文献   

17.
Prokaryotic proteases demonstrate a variety of substrate-selection strategies that prevent uncontrolled protein degradation. Proteasomes and ClpXP-like proteases form oligomeric structures that exclude large substrates from central solvated chambers containing their active sites. Monomeric prolyl oligopeptidases have been shown to contain beta-propeller structures that similarly reduce access to their catalytic residues. By contrast, Tsp-like enzymes contain PDZ domains that are thought to specifically target C-terminal polypeptides. We have investigated the sequence of Thermoplasma acidophilum tricorn protease using recently-developed database search methods. The tricorn protease is known to associate into a 20 hexamer capsid enclosing an extremely large cavity that is 37 nm in diameter. It is unknown, however, how this enzyme selects its small oligopeptide substrates. Our results demonstrate the presence in tricorn protease of a PDZ domain and two predicted six-bladed beta-propeller domains. We suggest that the PDZ domain is involved in targeting non-polar C-terminal peptides, similar to those generated by the T. acidophilum proteasome, whereas the beta-propeller domains serve to exclude large substrates from the tricorn protease active site in a similar manner to that previously indicated for prolyl oligopeptidase.  相似文献   

18.
Ghosh JG  Shenoy AK  Clark JI 《Biochemistry》2006,45(46):13847-13854
The functions of the interactive sequences in human alphaB crystallin that are involved in chaperone activity and complex assembly of small heat shock proteins need to be characterized to understand the mechanisms of action on unfolding and misfolding proteins. Protein pin arrays identified the hydrophobic N-terminal sequence (41STSLSPFYLRPPSFLRAP58) and the polar C-terminal sequence (155PERTIPITREE165) as interactive domains in human alphaB crystallin, which were then deleted to evaluate their importance in complex assembly and chaperone activity. Size exclusion chromatography determined that the complexes formed by the deletion mutants, Delta41-58 and Delta155-165, were larger and more polydisperse than the wild-type (wt) alphaB crystallin complex. In chaperone assays, the Delta41-58 mutant was as effective as wt alphaB crystallin in protecting partially unfolded betaL crystallin and alcohol dehydrogenase (ADH) and significantly less effective than wt alphaB crystallin in protecting unfolded citrate synthase (CS) from aggregation. Chaperone activity did not correlate with complex size but corresponded with the amount of substrate protein unfolding. The results confirmed the importance of N-terminal residues 41-58 in selective interactions with completely unfolded substrates. Poor solubility and limited or no chaperone activity for the three substrates characterized the Delta155-165 deletion mutant, which demonstrated the importance of C-terminal residues 155-165 in maintaining the solubility of unfolded substrates in a manner independent of the amount of substrate protein unfolding. The results presented in this report established that interactive domains in the N- and C-termini of human alphaB crystallin are important for the recognition, selection, and solubility of unfolding substrate proteins.  相似文献   

19.
AAA+ proteases employ a hexameric ring that harnesses the energy of ATP binding and hydrolysis to unfold native substrates and translocate the unfolded polypeptide into an interior compartment for degradation. What determines the ability of different AAA+ enzymes to unfold and thus degrade different native protein substrates is currently uncertain. Here, we explore the ability of the E. coli Lon protease to unfold and degrade model protein substrates beginning at N-terminal, C-terminal, or internal degrons. Lon has historically been viewed as a weak unfoldase, but we demonstrate robust and processive unfolding/degradation of some substrates with very stable protein domains, including mDHFR and titin(I27) . For some native substrates, Lon is a more active unfoldase than related AAA+ proteases, including ClpXP and ClpAP. For other substrates, this relationship is reversed. Thus, unfolding activity does not appear to be an intrinsic enzymatic property. Instead, it depends on the specific protease and substrate, suggesting that evolution has diversified rather than optimized the protein unfolding activities of different AAA+ proteases.  相似文献   

20.
High-temperature requirement A (HtrA), a highly conserved family of serine protease, plays crucial roles in protein quality control in prokaryotes and eukaryotes. The HtrA protein contains a C-terminal PDZ domain that mediates the proteolytic activity. Here we reported the solution structure of the HtrA PDZ domain from Streptococcus pneumoniae by NMR spectroscopy. Our results showed that the structure of HtrA PDZ domain, which contains three α-helices and five β-strands, illustrates conservation within the canonical PDZ domains. In addition, we demonstrated the interactions between S. pneumoniae HtrA PDZ domain and peptides with the motif XXX–YYF–COOH by surface plasmon resonance. Besides, we identified the ligand binding surface and the critical residues responsible for ligand binding of HtrA PDZ domain by chemical shift perturbation and site-directed mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号