首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Lavanttal Fault Zone (LFZ) is generally considered to be related to Miocene orogen-parallel escape tectonics in the Eastern Alps. By applying thermochronological methods with retention temperatures ranging from ~450 to ~40°C we have investigated the thermochronological evolution of the LFZ and the adjacent Koralm Complex (Eastern Alps). 40Ar/39Ar dating on white mica and zircon fission track (ZFT) thermochronology were carried out on host rocks (HRs) and fault-related rocks (cataclasites and fault gouges) directly adjacent to the unfaulted protolith. These data are interpreted together with recently published apatite fission track (AFT) and apatite (U-Th)/He ages. Sample material was taken from three drill cores transecting the LFZ. Ar release spectra in cataclastic shear zones partly show strongly rejuvenated incremental ages, indicating lattice distortion during cataclastic shearing or hydrothermal alteration. Integrated plateau ages from fault rocks (~76 Ma) are in parts slightly younger than plateau ages from HRs (>80 Ma). Incremental ages from fault rock samples are in part highly reduced (~43 Ma). ZFT ages within fault gouges (~65 Ma) are slightly reduced compared to the ages from HRs, and fission tracks show reduced lengths. Combining these results with AFT and apatite (U-Th)/He ages from fault rocks of the same fault zone allows the recognition of distinct faulting events along the LFZ from Miocene to Pliocene times. Contemporaneous with this faulting, the Koralm Complex experienced accelerated cooling in Late Miocene times. Late-Cretaceous to Palaeogene movement on the LFZ cannot be clearly proven. 40Ar/39Ar muscovite and ZFT ages were probably partly thermally affected along the LFZ during Miocene times.  相似文献   

2.
龙门山冲断隆升及其走向差异的裂变径迹证据   总被引:4,自引:1,他引:3  
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中-新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的0.1 mm/a增加到0.15~0.3 mm/a左右,局部可达0.9 mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

3.
Apatite fission track (AFT) and (U–Th)/He data from the High Atlas have been obtained for the first time to constrain the tectono‐thermal evolution of the central part of the chain. Results from Palaeozoic basement massifs indicate long residence at low temperatures, consistently with their original location out of the deepest Mesozoic rift troughs and indicating minor exhumation. The best rocks for extracting the Alpine history of the Atlas Mountains are Jurassic intrusives, which yield AFT ages centred on c. 80 Ma; thermal models based on AFT data and constrained by (U–Th)/He suggest that these ages are included in a slow cooling trend from intrusion age to c. 50 Ma ago that we attribute to post‐rift thermal relaxation. This is followed by a stability period of c. 30 Ma and then by a final exhumational cooling until present exposure. Eocene intrusives yield AFT ages similar to those of Rb–Sr and K–Ar suggesting rapid emplacement in the uppermost crust.  相似文献   

4.
This study presents the first suite of apatite fission‐track (AFT) ages from the SE part of the Western Sudetes. AFT cooling ages from the Orlica‐?nie?nik Dome and the Upper Nysa K?odzka Graben range from Late Cretaceous (84 Ma) to Early Palaeocene–Middle Eocene (64–45 Ma). The first stage of basin evolution (~100–90 Ma) was marked by the formation of a local extensional depocentre and disruption of the Mesozoic planation surface. Subsequent far‐field convergence of European microplates resulted in Coniacian–Santonian (~89–83 Ma) thrust faulting. AFT data from both metamorphic basement and Mesozoic sedimentary cover indicate homogenous Late Cretaceous burial of the entire Western Sudetes. Thermal history modeling suggests that the onset of cooling could be constrained between 89 and 63 Ma with a climax during the Palaeocene–Middle Eocene basin inversion phase.  相似文献   

5.
Zircon (ZFT) and apatite (AFT) fission-track low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the breakup of southwestern Gondwana. The thermochronological data obtained from samples of both the Precambrian basement and the Paleogene to Neogene sedimentary rocks from the continental rift of southeastern Brazil provided ZFT ages between 148 (15) and 64 (6) Ma, and AFT ages of 81 (8)–29 (3) Ma. These data clearly indicate syn- and post-rift reactivations during the Early Cretaceous, with great emphasis on Paleogene to Neogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin can be described in three main phases related to the rift to post-rift evolution of SE Brazil. In general, ZFT and AFT data yield spread values that become younger as samples are closer to the reactivated Neoproterozoic shear zones and might reflect source area exhumation. The analysis of ZFT and AFT data allowed interpretations regarding the main phases that occurred in the study area related to the thermotectonic and tectono-stratigraphic evolution in southeastern Brazil.  相似文献   

6.
Detrital zircon and apatite fission track (ZFT and AFT) data of the sandstones collected from the Liaoxi basins served as a significant probe to study the Meso-Cenozoic thermo-tectonic reactivation events in the northern margin of the North China Craton. All sandstones show wide ZFT and AFT age spectrum and most of ZFT and AFT ages are younger than depositional age of respective host rocks, which suggest widespread track resetting of the host rocks in the Liaoxi basins after deposition. This hot geothermal status in the Liaoxi basins deduced from ZFT and AFT data is temporal consistent with the lithospheric evolution of the North China Craton, which implies that the lithosphere under the northern margin of the North China Craton underwent similar thermo-tectonic destruction process as the intracratonic Bohai Sea. The young ZFT peak age, which ranges from ∼50 Ma to 20 Ma, to some extend, provides a temporal constraint on the time that lithosphere significantly thinned and following reverse of the Liaoxi basins and uplift of the eastern part of the Yan-Liao Orogenic Belt. Exhumation of 1.5–2 km can be estimated in the eastern part of the Yan-Liao Orogenic Belt since ∼30 Ma to 10 Ma.  相似文献   

7.
班公湖- 怒江缝合带为青藏高原内部分隔羌塘和拉萨两地块的构造边界,是研究青藏高原构造演化的重要窗口之一。该缝合带自西向东分为西段(班公湖至改则)、中段(安多至东巧)和东段(丁青至怒江),其中东段的研究程度较低。本次以东段八宿县郭庆乡一条花岗岩高程剖面为研究对象,采用激光剥蚀电感耦合等离子体质谱仪(LA- ICPMS)法对锆石和磷灰石开展裂变径迹测试。花岗岩锆石U- Pb年龄为~180 Ma,指示其结晶时代为早侏罗世。锆石和磷灰石裂变径迹年龄分别为180~130 Ma、86~61 Ma,对应的年龄- 海拔曲线分别为负斜率和正斜率。QTQt模拟显示花岗岩高程剖面顶部在130~60 Ma时剥蚀冷却速率快,中部在130~40 Ma时剥蚀冷却速率居中,而底部在~130 Ma之后一直保持最低的剥蚀冷却速率。这种差异性隆升源自班公湖- 怒江缝合带东段的南向俯冲板片断离早于北向俯冲板片断离。  相似文献   

8.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

9.
青藏高原新生代以来的隆升过程及特征长期以来广存争议.岩体中不同单矿物所记录的中低温热年代学信息适用于揭示较新年代地质体的隆升过程,可以为之提供有效制约.在青藏高原部分岩浆岩与变质岩露头区原位采集15块样品,利用锆石与磷灰石裂变径迹等热年代学结果为青藏高原中生代末期以来的隆升过程提供约束.其中,所获10块样品的锆石裂变径迹数据年龄范围为182~33 Ma,分别记录了渐新世之前青藏高原内不同块体间相互碰撞及高原内不同地区的构造热事件.特别是沿雅鲁藏布江缝合带分布的3个样品,锆石裂变径迹年龄结果一致显示始新世末期-渐新世早期该带存在一期显著的构造热事件.该构造热事件暗示在约36~33 Ma沿雅江缝合带发生过强烈的陆-陆硬碰撞.所获14块样品的磷灰石裂变径迹年龄范围为70.4~5.0 Ma,综合热史反演结果显示青藏高原南部中新世中晚期以来存在整体性隆升,特别是从上新世开始隆升速率显著加快.磷灰石裂变径迹年龄在空间分布上具有向高原东南部变年轻的趋势,表明青藏高原东南部在上新世以来的构造隆升较其他地区要强烈,暗示印度-亚洲板块碰撞驱动机制对该时期的高原隆升具有控制作用.此外,青藏高原中部在白垩纪末期-始新世可能即已隆升至相当高度,此后至今保持了相当低的剥蚀速率.   相似文献   

10.
The tectonic inversion of the Songliao Basin during the Oligo–Miocene may have played an important role in controlling the development of sandstone-type uranium deposits (SUDs). Here we investigate drill holes along a southeast to northwest section in this basin based on apatite fission-track (AFT) and zircon fission-track (ZFT) techniques. We present 50 data from 15 deep boreholes at different depths between 665 and 3956 m and different structural units including grabens and horsts formed in the Early Cretaceous beneath the basin. The results of the effective AFT ages are 100 ± 11 to 2.3 ± 0.4 Ma (P(x2) > 5%) and ZFT ages are 97.5–20.4 Ma (including binomial peak ages). These results reveal that the basin underwent two distinct stages of rapid cooling after Late Cretaceous. In the first stage, during the Late Cretaceous–Early Paleogene (~80–50 Ma), tectonic uplift occurred in all of the structural units including grabens and horsts, which was marked by an unconformity between the latest Cretaceous Mingshui and the Eocene Yi'an formations. In the second stage, during the Oligo–Miocene (~40–10 Ma), tectonic uplift occurred mainly in the grabens but not in the horsts, corresponding with a few sediments of the Neogene Da'an and Taikang formations. We propose that the folds and the thrust faults mostly characterize in the second stage indicating a major tectonic inversion in the basin. The shifting of the two stages was probably in response to differences in the subduction angles and directions of motion of the Paleo-Pacific Plate from the southeast. Combined with previous information, it was demonstrated that most of the U mineralization ages are younger than 40 Ma, with a peak in the Miocene or later (<20 Ma). We thus propose that the SUDs have been redistributed and redeposited locally in successive stages during and after the Oligo–Miocene tectonic inversion.  相似文献   

11.
We present 31 new apatite fission-track (AFT) ages for the island of Taiwan that, when combined with existing AFT and zircon fission-track (ZFT) data, provide regional spatial coverage of the island with respect to low-temperature thermochronometry. The overall pattern of ZFT and AFT ages in Taiwan exhibits unreset ages in the southern and western portions of the island and reset ages predominantly in the Central Range and eastern Taiwan. This pattern supports interpretations of the orogen kinematics as reflecting a crustal scale wedge with a southward propagating collision zone. In this model, new material is accreted to the wedge from the west and is transferred to the east with the greatest exhumation occurring along the eastern margin as recorded in the reset ages in the east and unreset ages in the west. The southward propagating collision is consistent with reset ages in the north, where erosional exhumation has been ongoing for longer, and unreset ages in the south, where the younger collision implies less time for erosional exhumation. Despite the variation in the age of the collision along the strike of the island, the widths of the AFT and ZFT reset age zones remain nearly constant between 23° 00′N to  24° 00′N and 23° 20′N to  24° 00′N, respectively, suggesting that the orogen is in an exhumational steady state over these regions with respect to the AFT and ZFT thermochronometers. We use the fission-track data in conjunction with observations of crustal structure, crustal fabric, and heat flow measurements to constrain a time-dependent, two-dimensional, thermomechanical model of orogen evolution. By accounting for the heat transfer, tectonic and erosion processes needed to predict AFT and ZFT ages, we are able to investigate the relationship between the measured ages and the tectonic characteristics of the orogen. With our model we conclude that: (1) roughly half of the material accretion in Taiwan occurs through underplating over an approximately 40 km wide region, (2) current average erosion rates are  3.3 mm/yr in the eastern Central Range and  2.3 mm/yr over the whole island, (3) the collision has been propagating southward at a rate between 20 and 51 km/Ma over the past 2–3 Ma, and (4) central Taiwan is in a topographic, thermal and exhumational steady state.  相似文献   

12.
Following Appalachian orogenesis, metamorphic rocks in central Newfoundland were exhumed and reburied under Tournaisian strata. New zircon fission‐track (ZFT) ages of metamorphic rocks below the Tournaisian unconformity yield post‐depositionally reset ages of 212–235 Ma indicating regional fluid‐absent reheating to at least ≥220°C. Post‐Tournaisian sedimentary thicknesses in surrounding basins show that burial alone cannot explain such temperatures, thus requiring that palaeo‐geothermal gradients increased to ≥30–40°C/km before final late Triassic accelerated cooling. We attribute these elevated palaeo‐geothermal gradients to localized thermal blanketing by insulating sediments overlying radiogenic high‐heat‐producing granitoids. Late Triassic rifting and magmatism before break up of Pangaea likely also contributed to elevated heat flow, as well as uplift, triggering late Triassic accelerated cooling and exhumation. Thermochronological ages of 240–200 Ma are seen throughout Atlantic Canada, and record rifting and basaltic magmatism on the conjugate margins of the Central Atlantic Ocean preceding the onset of oceanic spreading at ~190 Ma.  相似文献   

13.
Apatite fission track (AFT) analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma a...  相似文献   

14.
In North Africa, the High Atlas belt culminates at more than 4000 m. In Morocco, recent work shows that a lithospheric thinning explains about 1000 m of the mean topography, the remaining topography being related to crustal shortening. We combine regional geology with new apatite fission‐track (AFT) ages to constrain the timing of these events in the Marrakech High Atlas (MHA). In the inner belt, 10 AFT ages are comprised between 9 ± 1 and 27 ± 3 Ma. These Neogene ages indicate that the MHA underwent significant denudation during that time. In the southern foreland domain of the belt, three samples give scattered AFT ages between 27 ± 2 and 87 ±5 Ma. Geological evidences allow us to constrain the age of a major denudation event during Middle Miocene age. We propose that it is linked to the thermal doming highlighted in the whole Moroccan Atlas domain.  相似文献   

15.
The Ross Sea is a crucial area to investigate pathways of ice during the Cenozoic as it records the evolution of both the East and West Antarctic Ice Sheets. This work is based on detrital apatite fission track (AFT) data extracted from the sedimentary record of well CIROS‐2, which spans the last 5 Ma. The AFT data show a large range of ages, and most of the grains fit well with two main components that fall between 24 and 42 Ma and between 43 and 70 Ma, whereas the other components are not regularly distributed through the well, thus indicating a mixture of provenance from different areas along the Transantarctic Mountains. As a whole, our work suggests glacial expansion over the McMurdo Sound during the Pliocene, and ice periodically invading and retreating in Pleistocene.  相似文献   

16.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

17.
The Kuruktag uplift is located directly northeast of the Tarim craton in northwestern China. Neoarchaean-to-Neoproterozoic metamorphic rocks and intrusive rocks crop out widely in the uplift; thus, it is especially suited for a more complete understanding of the thermal evolution of the Tarim craton. Apatite fission-track (AFT) methods were used to study the exhumation history and cooling of these Precambrian crystalline rocks. Nine apatite-bearing samples were collected from both sides of the Xingdi fault transecting the Kuruktag uplift. Pooled ages range from 146.0 ± 13.4 to 67.6 ± 6.7 Ma, with mean track lengths between 11.79 ± 0.14 and 12.48 ± 0.10 μm. These samples can be divided into three groups based on age and structural position. Group A consists of five samples with AFT apparent ages of about 100–110 Ma and is generally associated with undeformed areas. Group B comprises three specimens with AFT apparent ages lower than 80 Ma and is mostly associated with hanging wall environments close to faults. Group C is a single apatite sample with the oldest relative apparent age, 146.0 ± 13.4 Ma. The modelled thermal history indicates four periods of exhumation in the Kuruktag uplift: late-Early Jurassic (180 Ma); Late Jurassic–Early Cretaceous (144–118 Ma); early-Late Cretaceous (94–82 Ma); and late Cenozoic (about 10 Ma). These cooling events, identified by AFT data, are assumed to reflect far-field effects from multi-stage collisions and accretions of terranes along the south Asian continental margin.  相似文献   

18.
The Tiegelongnan is the first discovered porphyry–epithermal Cu (Au) deposit of the Duolong ore district in Tibet, China. In order to constrain the thermal history of this economically valuable deposit and the rocks that host it, eight samples were collected to perform a low‐temperature thermochronology analysis including apatite fission track, apatite, and zircon (U‐Th)/He. Apatite fission track ages of all samples are between 34 ± 3 and 67 ± 5 Ma. Mean apatite (U‐Th)/He ages show wide distribution, ranging from 29.3 ± 2.5 to 56.4 ± 9.1 Ma. Mean zircon (U‐Th)/He ages range from 79.5 ± 12.0 to 97.9 ± 4.4 Ma. The exhumation rate of the Tiegelongnan deposit was 0.086 km m.y.?1 between 98 and 47 Ma and decreased to 0.039 km m.y.?1 since 47 Ma. The mineralized intrusion was emplaced at a depth of about 1400 m in the Tiegelongnan deposit. Six cooling stages were determined through HeFTy software according to low‐temperature thermochronology and geochronology data: (i) fast cooling stage between 120 and 117 Ma, (ii) fast cooling stage between 117 and 100 Ma, (iii) slow cooling stage between100 and 80 Ma, (iv) fast cooling stage between 80 and 45 Ma, (v) slow cooling stage between 45 and 30 Ma, and (vi) slow cooling stage (<30 Ma). Cooling stages between 120 and 100 Ma are mainly caused by magmatic–hydrothermal evolution, whereas cooling stages after 100 Ma are mainly caused by low‐temperature thermal–tectonic evolution. The Bangong–Nujiang Ocean subduction led to the formation of the Tiegelongnan ore deposit, which was buried by the Meiriqiecuo Formation andesite lava and thrust nappe structure; then, the Tiegelongnan deposit experienced uplift and exhumation caused by the India–Asia collision.  相似文献   

19.
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin.  相似文献   

20.
Coalbed methane (CBM) is a kind of burgeoning and enormously potential clean energy resource, and the temperature of the thermogenic CBM generation is close to that of the partial annealing zone (PAZ) of apatite fission tracks (AFT). In this study the thermo-tectonic history of the Huainan Coalfield and the potential CBM resource were studied and discussed by using the AFT method. The AFT data indicate that the apparent ages of AFT vary from 45.5 to 199.1 Ma. They are younger than the ages of their host strata (255–1800 Ma) except one sample, and the single-grain ages of AFT can be classified as a single age group for each sample. In combination with the geological setting, modeling results of the AFT ages, average lengths, and the thermal history based on the AFT single-grain ages and length distributions, some preliminary conclusions can be drawn as follows: (1) at least three thermo-tectonic events (in the periods of ∼240, 140 and 80 Ma, respectively) have occurred in the study area since the Late Paleozoic. The occurrence of both the first (during 240–220 Ma) and second (during 160–120 Ma) thermo-tectonic events is possibly responsible for the establishment of the patterns of gas generation and reservoir formation. The second thermo-tectonic event also led to slight accumulation of hydrocarbons and generation of thermogenic gas; (2) the AFT ages of most coal-bearing strata lie between 50 and 70 Ma. They should represent the cooling ages and the ages of inferred uplift and denudation, as well as the possible CBM release history. Therefore, the maximum burial depth of coal-bearing strata and the denudation thickness of the overlying strata are over 3000 and 2000 m in the Upper Cretaceous and Paleogene series, respectively; and (3) subsequently, a spot of secondary biogenic and scarcely thermogenic gas generation occurred due to negligible sedimentation during the Neogene and Quaternary periods. Thus, it can be presumed that subsequent tectonism would destroy the CBM reservoir after its formation in the Huainan Coalfield, especially in its structural development region. These AFT data may be helpful for a better understanding of the thermo-tectonic history of the Huainan Coalfield, as well as of CBM generation, storage and release in the Huainan Coalfield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号