首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
功能磁共振成像(functional magnetic resonance imaging,fMRI)被用于检测静息时脑功能神经网络.作者运用静息fMRI检测海马硬化颞叶癫痫(temporal lobe epilepsy,TLE)脑"默认模式",采用感兴趣区域功能连接分析检测16例TLE患者和16名正常对照静息时脑的"默认模式",并进行组内和组间分析.研究发现,与正常对照相比,TLE静息时海马、颞极、额叶、颞叶、壳核及楔前叶等脑区与后扣带回的功能连接增强.研究结果表明TLE患者的固有脑功能组织模式有可能出现紊乱.这一研究将有助于从脑功能的角度了解癫痫患者某些临床症状的发病机理,为今后癫痫诊治的发展提供一定的帮助.  相似文献   

2.
许多功能磁共振研究已经发现人脑的一些皮层区域在静息状态下出现共激活,这些区域形成连通的功能网络,称为"默认模式网络"。本文研究颞叶癫痫患者的默认模式网络,运用独立成分分析(Independent component analysis)分离出12例颞叶癫痫患者和12例正常对照的默认模式网络,进行组内分析得到两组被试的统计图,进行组间分析比较两组被试的默认模式网络的差异。结果表明默认模式网络均存在于颞叶癫痫患者和正常对照中,然而,在默认模式包含的网络中,颞叶癫痫患者前扣带回腹侧(ventral anterior cingulated cortex,vACC)、前额中分(medial prefrontal cortex,MPFC)、楔前叶(precuneus)、以及海马旁回区域比正常对照表现出代谢增强。这一结果有助于从脑功能的角度了解癫痫患者某些临床症状的发病机理,为今后癫痫诊治的发展提供一定的帮助。  相似文献   

3.
张大明  李春梅  王凤军  侯晓华  韩占强 《生物磁学》2011,(18):3555-3557,3585
目的:研究伴海马硬化的难治性颞叶癫痫(TLE)患者海马组织内脑源性神经营养因子(brain derivedneurotrophic factor,BDNF)的表达变化,探讨其在难治性颞叶癫痫发病机制中的作用。方法:采集5例伴海马硬化的难治性TLE患者手术中切除的海马组织,用逆转录-聚合酶链反应(RT—PCR)法检测BDNFmRNA表达,并与3例非海马硬化TLE患者对照。结果:与非海马硬化组比较,伴海马硬化的难治性TLE患者海马组织中的BDNFmRNA表达明显增加(P〈0.01)。结论:伴海马硬化的难治性TLE患者海马组织中BDNFmRNA表达表达增高,可能在海马硬化和难治性颞叶癫痫发生、发展中具有重要作用。  相似文献   

4.
目的:研究伴海马硬化的难治性颞叶癫痫(TLE)患者海马组织内脑源性神经营养因子(brain derived neurotrophic factor,BDNF)的表达变化,探讨其在难治性颞叶癫痫发病机制中的作用。方法:采集5例伴海马硬化的难治性TLE患者手术中切除的海马组织,用逆转录-聚合酶链反应(RT-PCR)法检测BDNF mRNA表达,并与3例非海马硬化TLE患者对照。结果:与非海马硬化组比较,伴海马硬化的难治性TLE患者海马组织中的BDNF mRNA表达明显增加(P<0.01)。结论:伴海马硬化的难治性TLE患者海马组织中BDNF mRNA表达表达增高,可能在海马硬化和难治性颞叶癫痫发生、发展中具有重要作用。  相似文献   

5.
基于动脉自旋标记(arterial spin labeling,ASL)技术,分析内侧颞叶癫痫(mesialtemporal lobe epilepsy,mTLE)患者大脑血流灌注(perfusion)的改变情况。在静息态下,采集了30例内侧颞叶癫痫伴单侧海马硬化发作间期患者(其中左侧16例,右侧14例)及22例健康志愿者的ASL数据,并通过计算获取其相对脑血流量(relative CBF,rCBF)及灌注不对称率(asymmetric index,AI)。癫痫病人与正常人的比较结果表明:左侧mTLE患者在两侧海马旁回、梭状回、额叶、颞叶和患侧海马回及岛叶,右侧mTLE患者在两侧海马回、海马旁回、额叶、颞叶和患侧杏仁核及岛叶,rCBF均有所下降,且患侧的下降程度和范围均大于对侧。说明mTLE患者的海马硬化可能导致了痫灶区功能异常,并通过癫痫的发作影响到全脑。  相似文献   

6.
目的探讨miR-134、CREB、pCREB在癫痫大鼠海马及难治性癫痫患者颞叶脑组织中的表达及意义。方法难治性癫痫患者及非癫痫对照组颞叶组织、氯化锂-匹罗卡品癫痫大鼠及空白对照组海马组织中,应用实时荧光定量PCR技术检测microRNA-134(miR-134)的表达,用Western blot方法检测CREB及p CREB的表达,用免疫组织化学方法检测人脑颞叶皮质及大鼠海马区CREB、p CREB的表达。结果与对照组相比miR-134表达在难治性癫痫患者中明显降低(P〈0.05),在癫痫模型组中点燃后3、7、14、60 d明显降低(P〈0.05),1 d与30 d表达降低较对照组差异无显著性(P〉0.05);癫痫模型组CREB在3、7、14、60 d时间点明显升高(P〈0.05)、pCREB各时间点表达均高于空白对照组(P〈0.05)。结论难治性癫痫患者颞叶皮质及癫痫动物海马中miR-134表达下降,CREB、pCREB表达升高,提示其可能在癫痫发生发展机制中起重要作用。  相似文献   

7.
目的:探讨不同部位缺血性脑卒中急性期患者认知功能损害的特点。方法:收集230例脑梗死急性期(1-14天)患者,包括额叶31例,颞叶27例,顶叶26例,枕叶21例,基底节47例,丘脑35例,小脑23例,脑干20例;采用中文版蒙特利尔认知评估量表(montreal cognitive assessment,MoCA)对受试者进行认知功能测评。结果:(1)各病变部位认知障碍的发生率存在显著性差异(P〈0.05),额叶组及丘脑组认知障碍发生率最高,达90%以上,其次为颞叶组,达到80%以上,小脑组及脑干组最低,约30%左右。(2)额叶组在视空间与执行功能、注意认知域分值低于其他各组(P〈0.05);颞叶组在命名、延迟回忆认知域分值低于其他各组;顶叶组及枕叶组MoCA总分分值低于基底节、小脑、脑干组(P〈0.05);丘脑组不仅在视空间与执行功能、注意认知域得分低于顶叶、枕叶、基底节、小脑和脑干组,且其语言及定向认知域分值低于其他各组(P〈0.05)。结论:不同部位脑梗死患者认知障碍的发生率及认知功能损害的特点不同。  相似文献   

8.
摘要 目的:探究β淀粉样蛋白(Aβ)和tau蛋白磷酸化程度与颞叶癫痫患者认知缺陷相关性。方法:2019年至2020年于我院接受治疗的70例颞叶癫痫患者作为本研究的实验组,同时纳入同期健康体检者70例作为本研究的对照组。对比两组一般临床指标、外周血清中β淀粉样蛋白和tau蛋白磷酸化程度;评估两组的智力、记忆力和认知功能障碍;通过Person法分析β淀粉样蛋白和tau蛋白磷酸化程度与颞叶癫痫患者认知缺陷相关性。结果:(1)比较显示实验组的Aβ1-28蛋白、Aβ1-40蛋白、tau蛋白和p-tau蛋白均高于对照组,但Aβ1-42蛋白低于对照组(P<0.05);(2)实验组语言智商(VIQ)、操作智商(PIQ)以及总智商(FIQ)评分均低于对照组(P<0.05);(3)实验组评估低于对照组(P<0.05);(4)实验组的MoCA评分显著低于对照组(P<0.05);(5)Aβ1-28蛋白、Aβ1-40蛋白、Tau蛋白和p-tau蛋白与颞叶癫痫患者认知缺陷存在正相关关系;Aβ1-42蛋白与颞叶癫痫患者认知缺陷则存在负相关关系(P<0.05)。结论:颞叶癫痫患者认知缺陷与tau蛋白磷酸化程度、Aβ1-28蛋白、Aβ1-42蛋白和Aβ1-40蛋白水平具有相关性,可作为认知缺陷的判断指标,为体检或临床发现颞叶癫痫患者是否存在认知功能缺陷提供依据。  相似文献   

9.
本研究通过分析磁共振弥散张量成像(diffusion tensor imaging,DTI)数据,观察内侧颞叶癫痫(mesial temporal lobe epilepsy,mTLE)患者大脑白质的改变。46例伴有单侧海马硬化的内侧颞叶癫痫患者(24例左侧颞叶癫痫和22例右侧颞叶癫痫),以及42例年龄和性别匹配的正常志愿者纳入本研究。采用基于纤维束追踪的空间统计分析方法(track-based spatialstatistics,TBSS),主要观察患者各向异性系数(fractionsal anisotropy,FA)的变化。结果发现,与正常志愿者相比,左侧mTLE患者FA降低的区域呈双侧分布,稍偏向患侧,胼胝体、上纵束、下纵束、内囊前肢等白质双侧都有异常,而扣带束、下额枕束只在左脑显著降低;右侧mTLE患者FA降低主要见于右脑,包括胼胝体、上纵束、下纵束和钩束等。结果表明,基于TBSS方法的DTI研究揭示了伴有海马硬化的mTLE患者的脑白质异常,有助于加深对mTLE病理生理机制的了解。  相似文献   

10.
儿童失神癫痫的默认模式网络的结构连接研究   总被引:1,自引:0,他引:1  
大脑结构连接是其功能连接的物质基础.已有研究表明,失神癫痫患者默认模式网络(default mode network,DMN)中的功能连接发生了改变.为了探索这些改变相应的结构基础,对11名儿童失神癫痫患者和12名正常对照,使用基于弥散张量成像(diffusion tensor imaging,DTI)的纤维束追踪技术,构建了每个被试DMN脑区间的纤维束连接.结果表明,在所有被试的DMN网络中一致发现后扣带/楔前叶到内侧前额叶、后扣带/楔前叶到左右双侧的内侧颞叶都存在纤维束连接.通过两组间统计比较这些纤维束连接的平均长度、连接强度、平均部分各向异性(fractional anisotropic,FA)值和平均弥散度(mean diffusivity,MD)值等参数,发现患者组的后扣带/楔前叶到内侧前额叶纤维束连接上的平均FA值及连接强度都显著降低,而平均MD值显著增加,并且其FA值与癫痫病程呈显著的负相关关系,这些改变可能影响了患者DMN网络的功能连接.本研究结果为DMN功能连接异常提供了相关的结构上的依据,提示后扣带/楔前叶到内侧前额叶的连接异常可能在儿童失神癫痫中起着非常重要的作用.  相似文献   

11.
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.  相似文献   

12.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.  相似文献   

13.
Luo C  Qiu C  Guo Z  Fang J  Li Q  Lei X  Xia Y  Lai Y  Gong Q  Zhou D  Yao D 《PloS one》2011,7(1):e28196
Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy.  相似文献   

14.

Purpose

Pharmaco-resistant temporal lobe epilepsy (TLE) is often treated with surgical intervention at some point. As epilepsy surgery is considered a last resort by most physicians, a long history of epileptic seizures prior to surgery is not uncommon. Little is known about the effects of ongoing TLE on neural functioning. A better understanding of these effects might influence the moment of surgical intervention. Functional connectivity (interaction between spatially distributed brain areas) and network structure (integration and segregation of information processing) are thought to be essential for optimal brain functioning. We report on the impact of TLE duration on temporal lobe functional connectivity and network characteristics.

Methods

Functional connectivity of the temporal lobe at the time of surgery was assessed by means of interictal electrocorticography (ECoG) recordings of 27 TLE patients by using the phase lag index (PLI). Graphs (abstract network representations) were reconstructed from the PLI matrix and characterized by the clustering coefficient C (local clustering), the path length L (overall network interconnectedness), and the “small world index” S (network configuration).

Results

Functional connectivity (average PLI), clustering coefficients, and the small world index were negatively correlated with TLE duration in the broad frequency band (0.5–48 Hz).

Discussion

Temporal lobe functional connectivity is lower in patients with longer TLE history, and longer TLE duration is correlated with more random network configuration. Our findings suggest that the neural networks of TLE patients become more pathological over time, possibly due to temporal lobe changes associated with long-standing lesional epilepsy.  相似文献   

15.
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder resulting in disruptive seizures. In the case of drug resistant epilepsy resective surgery is often considered. This is a procedure hampered by unpredictable success rates, with many patients continuing to have seizures even after surgery. In this study we apply a computational model of epilepsy to patient specific structural connectivity derived from diffusion tensor imaging (DTI) of 22 individuals with left TLE and 39 healthy controls. We validate the model by examining patient-control differences in simulated seizure onset time and network location. We then investigate the potential of the model for surgery prediction by performing in silico surgical resections, removing nodes from patient networks and comparing seizure likelihood post-surgery to pre-surgery simulations. We find that, first, patients tend to transit from non-epileptic to epileptic states more often than controls in the model. Second, regions in the left hemisphere (particularly within temporal and subcortical regions) that are known to be involved in TLE are the most frequent starting points for seizures in patients in the model. In addition, our analysis also implicates regions in the contralateral and frontal locations which may play a role in seizure spreading or surgery resistance. Finally, the model predicts that patient-specific surgery (resection areas chosen on an individual, model-prompted, basis and not following a predefined procedure) may lead to better outcomes than the currently used routine clinical procedure. Taken together this work provides a first step towards patient specific computational modelling of epilepsy surgery in order to inform treatment strategies in individuals.  相似文献   

16.
The pathophysiology of episodic memory dysfunction after infarction is not completely understood. It has been suggested that infarctions located anywhere in the brain can induce widespread effects causing disruption of functional networks of the cortical regions. The default mode network, which includes the medial temporal lobe, is a functional network that is associated with episodic memory processing. We investigated whether the default mode network activity is reduced in stroke patients compared to healthy control subjects in the resting state condition. We assessed the whole brain network properties during resting state functional MRI in 21 control subjects and 20 ‘first-ever’ stroke patients. Patients were scanned 9–12 weeks after stroke onset. Stroke lesions were located in various parts of the brain. Independent component analyses were conducted to identify the default mode network and to compare the group differences of the default mode network. Furthermore, region-of-interest based analysis was performed to explore the functional connectivity between the regions of the default mode network. Stroke patients performed significantly worse than control subjects on the delayed recall score on California verbal learning test. We found decreased functional connectivity in the left medial temporal lobe, posterior cingulate and medial prefrontal cortical areas within the default mode network and reduced functional connectivity between these regions in stroke patients compared with controls. There were no significant volumetric differences between the groups. These results demonstrate that connectivity within the default mode network is reduced in ‘first-ever’ stroke patients compared to control subjects. This phenomenon might explain the occurrence of post-stroke cognitive dysfunction in stroke patients.  相似文献   

17.
SH3 and multiple ankyrin (ANK) repeat domain 3 (SHANK3) is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses. SHANK3 plays an important role in the formation and maturation of excitatory synapses. In the brain, SHANK3 directly or indirectly interacts with various synaptic molecules including N-methyl-D-aspartate receptor, the metabotropic glutamate receptor (mGluR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Previous studies have shown that Autism spectrum disorder is a result of mutations of the main SHANK3 isoforms, which may be due to deficit in excitatory synaptic transmission and plasticity. Recently, accumulating evidence has demonstrated that overexpression of SHANK3 could induce seizures in vivo. However, little is known about the role of SHANK3 in refractory temporal lobe epilepsy (TLE). Therefore, we investigated the expression pattern of SHANK3 in patients with intractable temporal lobe epilepsy and in pilocarpine-induced models of epilepsy. Immunofluorescence, immunohistochemistry, and western blot analysis were used to locate and determine the expression of SHANK3 in the temporal neocortex of patients with epilepsy, and in the hippocampus and temporal lobe cortex of rats in a pilocarpine-induced epilepsy model. Double-labeled immunofluorescence showed that SHANK3 was mainly expressed in neurons. Western blot analysis confirmed that SHANK3 expression was increased in the neocortex of TLE patients and rats. These results indicate that SHANK3 participates in the pathology of epilepsy.  相似文献   

18.
Luo J  Zeng K  Zhang C  Fang M  Zhang X  Zhu Q  Wang L  Wang W  Wang X  Chen G 《Neurochemical research》2012,37(7):1381-1391
The Collapsin Response Mediator Protein-1 (CRMP-1) is a brain specific protein identified as a signaling molecule of Semaphorin-3A and act as axon repellent guidance factor in nervous system. Recent studies indicated that axon guidance molecules may play a role in synaptic reorganization in the adult brain and thereby promote epileptogenesis. This study aimed to investigate expression pattern of CRMP-1 in epileptogenesis. Using double immunofluorescence labeling, immunohistochemistry and western blot analysis, we looked into the CRMP-1 expression in temporal neocortex from patients with temporal lobe epilepsy (TLE) and histological normal temporal neocortex from the controls. We also studied the expression pattern of CRMP-1 in hippocampus and adjacent cortex of a TLE rat model on 6, 24, 72 h, 1, 2 weeks, 1 month, and 2 months post-seizure, and from control rats. CRMP-1 was mainly expressed in the neuronal cytoplasm in the temporal lobe of intractable TLE patients, which was co-expressed with -2. CRMP-1 expression was downregulated in temporal neocortical of TLE patients. In addition, in pilocarpine-induced animal model of epilepsy, CRMP-1 dynamically decreased in a range of 2 months. Thus, our results indicate that CRMP-1 may be involved in the development of TLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号