首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 546 毫秒
1.
宫美娜  李海军  王斌  王昭东 《轧钢》2020,37(1):12-17
采用热模拟单道次压缩实验,研究了Nb-Ti连铸坯热芯大压下轧制中动态再结晶行为及奥氏体晶粒转变规律。结果表明,变形温度越高,应变速率越低,发生动态再结晶的临界应变值越小,动态再结晶越充分。在变形温度1 350 ℃,继续增加应变至0.8和增加应变速率至10 s-1,奥氏体晶粒尺寸并未得到进一步细化,反而较应变0.5和应变速率5 s-1下的奥氏体晶粒更加粗大。这是因为高温粘塑性区的金属晶间粘性流动增加,位错增殖速度增大,在动态再结晶过程中会重新形成新的无畸变再结晶晶粒,这些新的无畸变晶粒的亚动态再结晶动力学极快,在较大驱动力下使奥氏体晶界快速迁移,从而使奥氏体发生一定程度的粗化。  相似文献   

2.
在1123~1423 K、0.1~10 s-1条件下对18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢进行70%大变形量热压缩研究。利用OM、SEM和EBSD分析热变形组织。结果表明,铁素体动态再结晶(DRX)主要发生在1123 K较低变形温度,随应变速率增大,晶粒细化程度增加,晶粒不均匀程度减小。应变速率对铁素体DRX影响较大,而奥氏体DRX对变形温度更加敏感。在1223 K、10 s-1条件下,铁素体相发生了以小角度晶界(LAGB)向大角度晶界(HAGB)转变的连续动态再结晶(CDRX),而在1323 K、0.1 s-1条件下,奥氏体相以不连续动态再结晶(DDRX)为主。低应变速率条件下升高温度易诱发DDRX,而在高应变速率条件下易发生CDRX。在高温低应变条件下,奥氏体相晶粒取向主要为(001)和(111)再结晶织构,而铁素体相在(001)和(111)织构之间存在竞争关系。拟合获得临界应力(应变)并确定了其与峰值应力(应变)的关系。随着应变增加,热加工失稳区缩小,且稳定区逐渐向高温高应变速率方向移动,1323~1423 K、0.01~6.05 s-1的热参数条件最适合热加工。  相似文献   

3.
采用Gleeble-3800热模拟试验机研究了N08811耐热合金在变形温度为900~1150℃、变形速率为0.1~5 s-1条件下的高温变形行为。结果表明,N08811合金的流变应力随着应变速率的增大及变形温度的下降而增加,是一种正应变速率敏感材料。通过对显微组织的研究,发现当应变速率为1 s-1时,N08811合金优先在变形晶粒的晶界处发生动态再结晶,再结晶晶粒数目及尺寸均随变形温度的升高而增加,至变形温度为1150℃时已发生完全再结晶。当变形温度一定时,高应变速率会降低N08811合金的再结晶温度,增加晶粒尺寸。依据真应力-真应变曲线,采用双曲正弦本构模型建立了N08811合金的流变应力本构方程,得到其热变形激活能为509.998 kJ·mol-1。  相似文献   

4.
王帅  赵阳  邵国华  陈礼清 《轧钢》2021,38(6):42-47
利用MMS-200热模拟试验机对一种中碳高硅弹簧钢进行了单道次热压缩试验,研究了该钢在变形温度为900~1 100 ℃及应变速率为0.1~10 s-1条件下的热变形行为,建立了应变补偿的Arrhenius流变应力预测模型。结果表明,应变速率和变形温度对该弹簧钢的奥氏体动态再结晶过程有显著影响。当变形速率为0.1、5、10 s-1时,在所有变形温度下均发生奥氏体动态再结晶;当变形速率为1 s-1且变形温度超过950 ℃时,奥氏体发生动态再结晶,其热变形激活能为445.5 kJ/mol。通过对真应力的预测值与试验值的对比,得出应变补偿Arrhenius模型具有准确性和预测性,其相关系数为0.976,平均相对误差为4.73%。  相似文献   

5.
采用Gleeble 3800热压缩试验机、Deform-3D有限元软件和光学显微镜研究了Inconel 718高温合金在950~1150℃温度范围和应变速率0.1~10 s-1范围内的组织演变和温度场模拟。结果表明,在低变形温度和高应变速率下,初始阶段随着应变的增加,流变应力迅速增加到峰值。达到峰值应力后,流变曲线呈现出明显的流变软化现象。在低变形温度、高应变速率下,产生的变形热较大,合金易于发生动态再结晶,且动态再结晶程度较高,晶粒尺寸较小。当应变速率降低,变形热也逐渐降低,合金内部动态再结晶的晶粒体积分数减少。在变形温度为1100℃和应变速率为0.1 s-1时,合金发生完全动态再结晶。基于Deform-3D软件模拟的温度场分布结果可知,低变形温度、高应变速率的热变形条件会使合金内部产生较大的变形热,随着变形温度的升高和应变速率的降低,变形热的值逐渐减小。当变形温度和应变速率一定时,合金内的变形热会随真应变的增加而不断增加。  相似文献   

6.
针对一种新型粉末高温合金FGH4113A(WZ-A3)进行了一系列热压缩实验,探究了变形温度、应变速率、应变量对微观组织演化的影响规律,并提出了获得细小均匀γ+γ′双相晶粒组织的热变形参数。结果表明:在温度1100℃、应变速率0.1 s-1、真应变0.1~0.7范围内,应变增大有利于促进动态再结晶以及细化晶粒。随应变增加,γ’相体积分数先减小后增大,随后保持稳定,并且在热变形过程中γ’相形貌逐渐趋于球形。在温度1100℃、变形量50%、应变速率0.01~1 s-1范围内,应变速率增大能够提高动态再结晶程度并细化晶粒。应变速率由0.01~0.1 s-1增大至1 s-1时,由于绝热温升以及位错滑移加剧,γ’相体积分数减小约2%。在应变速率0.1s-1、变形量50%、温度1070~1160℃范围内,变形温度的提升有利于促进动态再结晶和晶粒长大。随着变形温度升高至1130℃,γ’相已大量溶解,钉扎晶界能力大幅减弱,平均晶粒尺寸增大至12.1μm。在变形温度1100℃、应变速率1 s  相似文献   

7.
为研究微合金元素Nb对高碳合金钢动态再结晶行为的影响,利用Gleeble-3500热模拟试验机进行单道次压缩试验,测定了高碳合金钢在变形温度为950~1150 ℃、应变速率为0.01~5 s-1的流变应力曲线,利用Zeiss光学显微镜观察了奥氏体动态再结晶晶粒形态,通过回归计算获得了相应的再结晶激活能,建立了热变形方程。结果表明:较高的变形温度和较低的应变速率有利于含铌高碳合金钢发生动态再结晶;含铌高碳合金钢的动态再结晶晶粒尺寸随着变形温度的升高而增大,当变形温度为1050 ℃时,含铌高碳合金钢已大量出现动态再结晶晶粒;0.040%铌加入到高碳合金钢中,在应变速率为0.1 s-1,变形温度为1150 ℃时推迟了钢的动态再结晶开始时间约2.23 s,动态再结晶形变激活能增加了52.26 kJ/mol。  相似文献   

8.
利用Gleeble-3500热模拟试验机对18CrNiMo7-6齿轮钢进行了等温单道次压缩试验,研究了变形温度为900~1150℃,应变速率为0.01~5 s-1,应变为0.76的条件下材料的热变形行为;并且通过光学显微镜对热变形后的微观组织进行了分析。建立了唯象型Arrhenius本构方程,预测的峰值应力与试验数据具有很好的一致性。高温热变形过程是加工硬化与动态回复以及动态再结晶的竞争过程,在热变形的过程中会形成变形晶粒、再结晶晶粒、等轴晶和晶粒长大等4种类型的微观组织。当应变速率为0.01 s-1时,动态再结晶程度与变形温度成正比,当变形温度超过1050℃时,变形能转变成晶粒长大的驱动能,使得晶粒粗大;当应变温度一定(1050℃)时,随着应变速率的增大,动态再结晶发生不完全,导致晶粒组织出现细化、畸变、不完全再结晶共存的现象。变形程度越大,晶粒越细小。  相似文献   

9.
13Cr超级马氏体不锈钢热压缩变形行为与组织演变   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Gleeble-3500热模拟试验机对13Cr超级马氏体不锈钢进行单道次压缩变形试验,系统研究变形温度在950~1150 ℃、应变速率为0.001~10 s-1条件下的热变形行为。利用双曲正弦模型建立了13Cr超级马氏体不锈钢的流变应力本构方程,求得试验钢的热变形激活能为412 kJ/mol,并基于动态材料模型(DMM)理论绘制了材料的热加工图,得出材料的最佳热变形工艺参数窗口为:变形温度1032~1072 ℃,应变速率0.039~0.087 s-1。组织演变结果表明,试验钢在高变形温度和低应变速率的条件下,容易发生动态再结晶。当应变速率一定时(0.01 s-1),变形温度从950 ℃升到1050 ℃,动态再结晶的体积分数从18.7%升高到60.1%,组织的再结晶程度提高,晶粒均匀细小;当变形温度一定时(1050 ℃),随着应变速率的降低,动态再结晶的晶粒长大粗化。  相似文献   

10.
AM355不锈钢的热变形行为   总被引:1,自引:0,他引:1       下载免费PDF全文
使用Gleeble-3800热模拟试验机对锻造态AM355不锈钢进行等温热压缩试验,应变速率选择0.01~10 s-1,变形温度选择1173~1423 K。热变形后的组织通过光学显微镜、电子背散射衍射、透射电镜进行观察。基于Arrhenius模型采用峰值应力构建了本构方程,并对其改进得到了准确度更高的本构方程。采用动态材料模型构建了热加工图。由热加工图与变形后的组织得到了真应变为0.9时的热加工窗口。结果表明,适用于AM355钢的最优热加工区域为变形温度1250~1300 K、应变速率0.01~0.03 s-1与变形温度1300~1400 K、应变速率0.01~10 s-1及变形温度1400~1423 K、应变速率0.5~10 s-1,该区域下能量耗散率均小于0.36,且发生了完全的动态再结晶。此外,还确立了完全动态再结晶时奥氏体晶粒尺寸ddrx与Z参数的关系。  相似文献   

11.
利用热压缩试验、显微组织分析等手段,研究了一种新型低碳含铌热轧H型钢在1000~1200 ℃变形温度和0.1~5 s-1应变速率下的热变形行为。分析了变形参数对试验钢微观组织的影响,建立了耦合应变量因素的改进型本构方程,并采用临界比的临界应变模型对发生动态再结晶的临界应变值进行了预测。结果表明:较低应变速率和变形温度下,试验钢的原始奥氏体组织更均匀且平均晶粒尺寸更小;应变速率的升高不利于动态再结晶的发生。发生动态再结晶的临界应变与峰值应变的关系为εc/εp=0.47。与耦合应变量因素有关的本构方程和临界应变预测模型能较准确地预测各变形温度下低碳含铌热轧H型钢的流变应力和动态再结晶临界应变值。  相似文献   

12.
通过Gleeble-3800热模拟试验机研究了变形温度850~1200 ℃,应变速率0.1 ~10 s-1条件下Ti微合金化非调质钢的奥氏体动态再结晶行为。分析变形温度、变形速率、碳氮化物的析出行为对奥氏体动态再结晶的影响,计算动态再结晶激活能,获得动态再结晶状态图和热加工图。结果表明,随着Ti含量从0增加为0.042%和0.063%,钢中碳氮化物的析出量分别为0%、0.040%和0.038%,呈现出先增加后减少的趋势,相应的动态再结晶的激活能分别为360.218、394.015和378.247 kJ/mol,0.042%Ti含量的非调质钢激活能最高。通过功率耗散图和塑性失稳图的叠加得到了热加工图,获得了Ti微合金化非调质钢的最佳热加工工艺范围是900~1050 ℃的变形温度,0.1~0.2 s-1的变形速率和1100~1200 ℃变形温度,0.1~4 s-1变形速率。  相似文献   

13.
采用Gleeble-1500热模拟试验机,在压缩温度为950~1050 ℃(间隔50 ℃)、预应变为0.1~0.2(间隔0.05)、应变速率为0.01~1 s-1、不同原始晶粒尺寸和道次间隔时间条件下,对17CrNiMo6钢进行双道次热压缩试验。讨论了道次间隔时间、压缩温度、预应变、应变速率和原始晶粒尺寸对17CrNiMo6钢静态再结晶行为的影响。根据回归分析得到静态再结晶在不同变形条件下的流变应力曲线,结合压缩后试样的显微组织,建立了17CrNiMo6钢静态再结晶动力学模型和晶粒尺寸模型。结果表明,17CrNiMo6钢静态再结晶体积分数随压缩温度、间隔时间、预应变和应变速率增加而增大;静态再结晶晶粒尺寸随压缩温度和原始奥氏体晶粒尺寸增加而增大,随预应变和应变速率的增加而减小。通过对比所建模型的预测值与热压缩所得的试验值,发现二者较为吻合,验证了模型的准确性。  相似文献   

14.
根据Gleeble-3500热模拟试验机测量30CrNi3MoV钢的真应力-真应变曲线,系统研究了应变速率为0.01、0.1 s-1时钢材的动态再结晶行为,并构建了其动态再结晶模型。结果表明:30CrNi3MoV钢在高温小应变速率下更容易发生动态再结晶,其热变形激活能为328.2 kJ/mol;通过加工硬化率随流变应力变化曲线(θ-σ)的拐点确定临界应变,可得动态再结晶临界应变方程为εc=0.001 22Z0.175;构建的动态再结晶体积分数及其平均晶粒尺寸模型能够较好地预测试验钢的动态再结晶体积分数及其晶粒尺寸;当应变速率为0.1 s-1、变形温度为1050 ℃时,试验钢的晶粒最细小、均匀,平均晶粒尺寸约为19.9 μm。  相似文献   

15.
采用热模拟试验法研究了变形温度(340~500℃)和应变速率(0.01~25 s-1)对均匀化态Mg-6Gd-1.2Y-0.53Zr合金动态再结晶(DRX)临界应变及体积分数的影响,通过构建热加工图优化了其热加工工艺参数范围。结果表明,在0.01~1 s-1的低应变速率下,该合金的动态再结晶(DRX)临界应变量随变形温度的升高而升高,而在10~25 s-1高应变速率下,DRX临界应变量随变形温度的升高而略微下降。应变速率及变形温度的升高都使DRX体积分数增大,在500℃、25 s-1条件下,合金的动态再结晶体积分数最高,达90.0%。根据构建的热加工图,当变形量在30%~80%之间时,较佳的热加工工艺区间为400~500℃、0.01~1 s-1以及420~500℃、10~25 s-1。在10~25 s-1应变速率下,当变形量为10%~80%时,合金最适宜的变形温度为460~500℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号