首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the environmental toxicant nonylphenol on cytosolic free Ca2+ concentration ([Ca2+]i) and proliferation has not been explored in human osteoblast-like cells. This study examined whether nonylphenol alters Ca2+ levels and causes cell death in MG63 human osteosarcoma cells. [Ca2+]i and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Nonylphenol at concentrations above 3 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 90% by removing extracellular Ca2+. The nonylphenol-induced Ca2+ influx was insensitive to blockade of L-type Ca2+ channel blockers. After pretreatment with 10 microM nonylphenol, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to induce [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change nonylphenol-induced [Ca2+]i rises. The nonylphenol-induced [Ca2+]i rises were enhanced or inhibited by phorbol myristate acetate or GF 109203X, respectively. At concentrations of 10 and 20 microM nonylphenol killed 55% and 100% cells, respectively. The cytotoxic effect of 10 microM nonylphenol was unaltered by pre-chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, nonylphenol induced [Ca2+]i rises by causing Ca2+ release from intracellular stores and Ca2+ influx from extracellular space. Furthermore, nonylphenol can cause Ca2+-unrelated cytotoxicity in a concentration-dependent manner.  相似文献   

2.
3.
Kupffer cells contain voltage-dependent calcium channels.   总被引:13,自引:0,他引:13  
Kupffer cells, the resident hepatic macrophages, are activated by calcium, but conclusive evidence that they contain voltage-dependent calcium channels has not been presented previously. In this study, the cytosolic free calcium concentration ([Ca2+]i) of cultured Kupffer cells was measured with the fluorescent Ca2+ indicator fura-2. Partial replacement of extracellular Na+ by K+ caused an increase in [Ca2+]i in a concentration-dependent manner (half-maximal effect at 81 mM K+), presumably due to membrane depolarization. At 65 mM K+, where there were minimal changes in [Ca2+]i, addition of the dihydropyridine-type calcium channel agonist BAY K 8644 (1 microM) caused a large increase in [Ca2+]i. Overall, the effect of BAY K 8644 (1 microM) was to shift the concentration-response curve for K+ to the left (half-maximal effect at 61 mM K+). Under depolarizing conditions (65 mM K+), BAY K 8644 increased [Ca2+]i in a concentration-dependent manner (half-maximal effect at approximately 400 nM BAY K 8644). Moreover, the dihydropyridine-type calcium channel blocker nitrendipine inhibited the BAY K 8644-induced increase in [Ca2+]i in a concentration-dependent manner (half-maximal inhibition with about 25 nM nitrendipine). When extracellular Ca2+ was omitted from the incubation medium, the increases in [Ca2+]i due to BAY K 8644 were prevented completely. In addition, an intracellular Ca2+ antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (200 microM), did not inhibit the BAY K 8644-sensitive, voltage-dependent increase in [Ca2+]i. Thus, these data collectively indicate that BAY K 8644 causes a transmembrane Ca2+ influx in Kupffer cells in a voltage-dependent manner, providing the first direct evidence that Kupffer cells contain L-type voltage-dependent Ca2+ channels.  相似文献   

4.
1. The NMDA-type glutamate receptor antagonist, dizocilpine (MK-801) can protect against neurotoxicity associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its principal metabolite, the 1-methyl-4-phenylpyridinium ion (MPP+). It has been suggested that these neurotoxic effects may be mediated by release of excitatory amino acids, but possible alternative mechanisms have been little investigated. 2. MPTP and MPP+ (0.1-1000 microM) were tested in superfused rat striatal synaptosomes preloaded with [3H]-dopamine. Both MPTP (10 microM and higher) and MPP+ (1 microM and higher) evoked an immediate and concentration-dependent release of [3H]-dopamine. The maximal effect exceeded that achievable with nicotine. For subsequent experiments, submaximal concentrations of MPTP (50 microM) and MPP+ (10 microM) were tested. 3. MK-801 (0.1-100 microM) inhibited responses to MPTP (50 microM) and MPP+ (10 microM) in a concentration-dependent manner. However, further tests of NMDA-type glutamate receptor involvement proved negative. Responses to MPTP or MPP+ were unaffected by the omission of Mg2+ or Ca2+ and were not reduced by the NMDA receptor antagonists, AP-7 (200 microM) and kynurenic acid (300 microM). In this assay, N-methyl-D-aspartate (even in the absence of Mg2+ and with added glycine and strychnine) did not evoked [3H]-dopamine release. 4. In crude membrane preparations of rat cerebral cortex, MPTP and MPP+ inhibited high-affinity [3H]-nicotine binding to nicotinic cholinoceptors (IC50 1.8 microM and 26 microM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Koh SB  Ban JY  Lee BY  Seong YH 《Planta medica》2003,69(6):506-512
The present study was performed to examine the neuroprotective effects of fangchinoline (FAN) and tetrandrine (TET), bis-benzylisoquinoline alkaloids, which exhibit the characteristics of Ca 2+ channel blockers, on H2O2 -induced neurotoxicity using cultured rat cerebellar granule neurons. H2O2 produced a concentration-dependent reduction of cell viability, which was blocked by (5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,10-imine (MK-801), an N-methyl- D-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca 2+ channel blocker, and NG-nitro- L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. Pretreatment with FAN and TET over a concentration range of 0.1 to 10 microM significantly decreased the H2O2 -induced neuronal cell death as assessed by a trypan blue exclusion test, a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei. In addition, FAN and TET inhibited the H2O2 -induced elevation of glutamate release into the medium, elevation of the cytosolic free Ca 2+ concentration ([Ca 2+] c ), and generation of reactive oxygen species (ROS). These results suggest that FAN and TET may mitigate the harmful effects of H2O2 -induced neuronal cell death by interfering with the increase of [Ca 2+] c, and then by inhibiting glutamate release and generation of ROS. Abbreviations. AP5:D(-)-2-amino-5-phosphonopentanoic acid DMSO:dimethyl sulfoxide FAN:fangchinoline H 2 DCF-DA:2',7'-dichlorodihydrofluorescin diacetate MK-801:(5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,20-imine MTT:3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide L-NAME: NG-Nitro- L-arginine methyl ester NMDA: N-methyl- D-aspartate TET:tetrandrine  相似文献   

6.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

7.
The effects of beauverficin, a cyclodepsipeptide compound, on ion currents in a mouse neuroblastoma and rat glioma hybrid cell line, NG108-15, were investigated with the aid of the whole-cell voltage-clamp technique. Beauvericin (0.3-100 microM) reversibly produced an inhibition of L-type voltage-dependent Ca2+ current (I(Ca,L)) in a concentration-dependent manner. Beauvericin caused no change in the overall shape of the current-voltage relationship of I(Ca,L). The IC(50) value of beauvericin-induced inhibition of I(Ca,L) was 4 microM. Neither gabapentin (30 microM) nor omega-conotoxin GVIA (3 microM) had effects on I(Ca,L). Beauvericin (30 microM) shifted the steady-state inactivation curve of I(Ca,L) to more negative membrane potentials by approximately -15 mV. The inhibitory effects of beauvericin on I(Ca,L) exhibited tonic and use-dependent characteristics. Beauvericin also suppressed I(Ca,L) evoked by repetitive action potential waveforms effectively. However, beauvericin (30 microM) had no effect on delayed rectifier K+ current in NG105-18 cells. Under current-clamp configuration, beauvericin reduced the firing frequency of action potentials. Therefore, this study indicates that beauvericin is a relatively specific inhibitor of L-type Ca2+ current in NG108-15 cells.  相似文献   

8.
The effect of the oxidizing agent thimerosal on cytosolic free Ca(2+) concentration ([Ca(2+)]i) and proliferation has not been explored in human osteoblast-like cells. This study examined whether thimerosal alters Ca(2+) levels and causes cell death in MG63 human osteosarcoma cells. [Ca(2+)]i and cell death were measured using the fluorescent dyes fura-2 and WST-1, respectively. Thimerosal at concentrations above 5 microM increased [Ca(2+)]i in a concentration-dependent manner. The Ca(2+) signal was reduced by 80% by removing extracellular Ca(2+). The thimerosal-induced Ca(2+) influx was sensitive to blockade of La(3+), and dithiothreitol (50 microM) but was insensitive to nickel and several L-type Ca(2+) channel blockers. After pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), thimerosal failed to induce [Ca(2+)]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change thimerosal-induced [Ca(2+)]i rises. At concentrations of 5, 10 and 20 microM thimerosal killed 33, 55 and 100% cells, respectively. The cytotoxic effect of 5 microM thimerosal was reversed by 54% by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in MG63 cells, thimerosal induced a [Ca(2+)]i rise by causing Ca(2+) release from endoplasmic reticulum stores and Ca(2+) influx from extracellular space. Furthermore, thimerosal can cause Ca(2+)-related cytotoxicity in a concentration-dependent manner.  相似文献   

9.
The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a Ca2+ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type Ca2+ channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 microM significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of [Ca2+]i and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with [Ca2+]i influx, due to its function as a Ca2+ channel blocker, and then by inhibiting glutamate release and oxidants generation.  相似文献   

10.
1. Tetrandrine (TET, a Ca2+ antagonist of Chinese herbal origin) and thapsigargin (TSG, an endoplasmic reticulum Ca2+ pump inhibitor) concentration-dependently mobilized Ca2+ from intracellular stores of HL-60 cells, with EC50 values of 20 microM and 0.8 nM, respectively. After intracellular Ca2+ release by 30 nM TSG, there was no more discharge of Ca2+ by TET (100 microM), and vice versa. 2. Pretreatments with 100 nM rauwolscine (alpha 2-adrenoceptor antagonist), 100 nM prazosin (alpha 1-adrenoceptor antagonist), 10 nM phorbol myristate acetate (PMA, a protein kinase C activator) or 100 nM staurosporine (a protein kinase C inhibitor) had no effect on 100 microM TET-induced intracellular Ca2+ release. 3. After intracellular Ca2+ release by 30 nM TSG in Ca(2+)-free medium, readmission of Ca2+ caused a substantial and sustained extracellular Ca2+ entry. The latter was almost completely inhibited by 100 microM TET (IC50 of 20 microM) added just before Ca2+ readmission. In Ca(2+)-containing medium, 30 nM TSG caused a sustained phase of cytosolic Ca2+ elevation, which could be abolished by 100 microM TET. TET was also demonstrated to retard basal entry of extracellular Mn2+ and completely inhibit TSG-stimulated extracellular Mn2+ entry. 4. TSG-induced extracellular Ca2+ entry was insensitive to the L-type Ca2+ channel blocker, nifedipine (1 microM), but was completely inhibited by the non-selective Ca2+ channel blocker La3+ (300 microM). Depolarization with 100 mM KCl did not raise the cytosolic Ca2+ level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of protein-tyrosine kinase (PTK) and protein-tyrosine phosphatase (PTP) inhibitors on voltage-activated barium currents (I(Ba)) through L-type calcium channels increased by hypotonic solution were investigated in canine basilar arterial myocytes by the whole-cell patch-clamp technique. I(Ba) was elicited by depolarizing step from a holding potential of -80 to +10 mV and identified by using an L-type calcium channel agonist, Bay K 8644 (100 nM), and an L-type calcium channel blocker, nicardipine (1 microM). Hypotonic superfusate induced cell swelling and acted as a stretch stimulus, which reversibly increased peak I(Ba) amplitude at +10 mV. I(Ba) was also decreased by nicardipine (1 microM) under the hypotonic condition. PTK inhibitors such as herbimycin A (30 nM), genistein (10 microM), and lavendustin A (10 microM) decreased I(Ba) enhanced by hypotonic solution. Genistein also decreased I(Ba) in a concentration-dependent manner under the isotonic condition. The inactive genistein analogue daidzein (10 microM) had no effect on I(Ba) under either the isotonic or hypotonic condition. By contrast, herbimycin A did not decrease I(Ba) under the isotonic condition. Sodium orthovanadate (10 microM), a PTP inhibitor, increased I(Ba) under both conditions. The present results suggest that cell swelling by hypotonic solution increases the L-type calcium channel currents in canine basilar artery and that herbimycin-sensitive PTK activity is primarily involved in the enhancement of calcium channel currents.  相似文献   

12.
Oxidative damage induced by beta-amyloid (Abeta) is closely associated with the hallmark pathologies of Alzheimer's disease (AD) and may play a critical role in the development of AD. In this study, the protective effects of vitisin A and heyneanol A, resveratrol oligomers isolated from Vitis amurensis Rupr. (Vitaceae), against Abeta-induced oxidative cell death were investigated using rat pheochromocytoma (PC12) cells. Exposure of PC12 cells to the Abeta (20 microM) for 24 h resulted in neuronal cell death, whereas pretreatment with vitisin A or heyneanol A at the concentration range of 5-50 microM reduced Abeta-induced cell death. In addition, Abeta-induced elevation of reactive oxygen species generation, the primary cause of Abeta-induced oxidative stress, was attenuated by treatment of vitisin A or heyneanol A (10, 25, 50 microM). Abeta-treated cells also displayed characteristic features of apoptosis such as induction of DNA fragmentation and caspase-3 activation, but vitisin A and heyneanol A (10, 50 microM) significantly suppressed these events. These results suggest that vitisin A and heyneanol A prevent Abeta-induced neurotoxicity through attenuating oxidative stress induced by Abeta, and may be useful as potential preventive or therapeutic agents for AD.  相似文献   

13.
1. The contraction and intracellular Ca2+ change evoked by diadenosine tetraphosphate (AP4A) were studied in the outer longitudinal muscle of the guinea-pig urinary bladder and compared with those evoked by ATP and alpha, beta-methylene ATP (a P2-purinoceptor agonist). 2. AP4A, ATP and alpha, beta-methylene ATP produced concentration-dependent transient contractions. These contractions were inhibited by PPADS (pyridoralphosphate-6-azophenyl- 2'-4'-disulphonic acid), 0.3- 30 microM, a P2x-purinoceptor antagonist, and suramin, 1-300 microM, a P2-purinoceptor antagonist in a concentration-dependent manner. From Schild plot analysis, the apparent pA2 values for PPADS for contractions evoked by AP4A, ATP and alpha, beta-methylene ATP were 6.86, 6.56, 6.74, and those for suramin were 6.01, 4.59 and 5.12, respectively; the Schild slopes for PPADS were 1.07, 1.14 and 1.06, and, those for suramin 0.75, 1.05 and 1.16, respectively. 3. AP4A (10 microM) and ATP (100 microM) failed to elicit any contraction of the tissue after a desensitization produced by repeated application of alpha, beta-methylene ATP (1 microM). 4. In fluorescence experiments with fura-2, the increases in [Ca2+]i and contraction evoked by AP4A were suppressed by suramin and nifedipine, an L-type Ca2+ channel blocker. 5. These findings suggest that P2x-purinoceptors, which are more sensitive to PPADS than suramin, exist on the outer longitudinal muscles of guinea-pig urinary bladder, and that the AP4A-evoked contraction results from Ca2+ influx.  相似文献   

14.
Amyloid beta protein (Abeta)- and human group IIA secretory phospholipase A(2) (sPLA(2)-IIA)-induced neuronal cell death have been established as in vitro models for Alzheimer's disease (AD) and stroke. Both sPLA(2)-IIA and Abeta causes neuronal apoptosis by increasing the influx of Ca(2+) through L-type voltage-sensitive Ca(2+) channel (L-VSCC). In the present study, we evaluated effects of a selective L-VSCC blocker, S-(+)-methyl 4,7-dihydro-3-isobutyl-6-methyl-4-(3-nitro-phenyl)thieno[2,3-b]pyridine-5-carboxylate (S-312-d), on Abeta- and sPLA(2)-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. S-312-d significantly rescued cortical neurons from Abeta- and sPLA(2)-IIA-induced cell death. Both cell death stimuli caused the appearance of apoptotic features such as plasma membrane blebs, chromatin condensation, and DNA fragmentation. S-312-d completely suppressed these apoptotic features. Before apoptosis, the two death ligands markedly enhanced an influx of Ca(2+) into neurons. S-312-d significantly prevented neurons from sPLA(2)-IIA- and Abeta-induced Ca(2+) influx. Furthermore, the neuroprotective effect of S-312-d was more potent than that of another L-VSCC blocker, nimodipine. On the other hand, blockers of other VSCCs such as the N-type and P/Q-type calcium channels had no effect on the neuronal cell death, apoptotic features and Ca(2+) influx. In conclusion, we demonstrated that S-312-d rescues cortical neurons from Abeta- and sPLA(2)-IIA-induced apoptosis.  相似文献   

15.
Neurotoxicant-induced elevation of intracellular calcium (Ca(2+)) and modulation by phystoestrogens were examined in vitro using human neuroblastoma SH-SY5Y cells cultured with amyloid beta-peptide (Abeta) and 1-methyl-4-phenyl-pyridine (MPP+). Although Abeta itself did not increase Ca(2+), it exacerbated the effects of carbachol. The elevation of Ca(2+) caused by the agents in combination could be reduced by pretreatment with the phytoestrogens equol and genistein, as well as by the L-type Ca(2+) channel blocker nifedipine. MPP+ exposure also elevated Ca(2+), an effect blocked by nifedipine but not by the phytoestrogens. As opposed to phytoestrogens, nifedipine was also able to significantly reduce cell death caused by higher concentrations of MPP(+) in the LDH viability assay. The results suggest that phytoestrogens are unlikely to serve as general cellular protectants for neurotoxicants with different mechanisms of action. The concentrations of Abeta and MPP(+) affecting Ca(2+) release did not inhibit cell viability as measured with the LDH release assay. This indicates that mechanisms involved with toxicity can be studied at doses that are not lethal.  相似文献   

16.
1 The aim of this study was to examine whether sodium nitroprusside (SNP)-induced relaxation of rat fundus longitudinal smooth muscle involves ryanodine-sensitive Ca2+ release. 2 SNP (300 nM-30 microM) elicited concentration-dependent relaxation of precontracted (1 microM carbachol) rat fundus, an effect almost abolished by the selective guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 microM). 3 SNP-mediated relaxations were almost abolished by 10 microM ryanodine. 4 SNP-mediated relaxations were also reduced by either 1 microM apamin (a selective small conductance Ca(2+)-sensitive K+ channel, SKCa, inhibitor) or the selective L-type Ca2+ channel inhibitor, nicardipine (3 microM). 5 SNP-induced relaxations were insensitive to 1 mM tetraethylammonium chloride (an inhibitor of large-conductance Ca(2+)-sensitive K+ channels) and 1 microM glibenclamide (an ATP-sensitive K+ channel inhibitor). 6 These data suggest that SNP-mediated fundus relaxation occurs via a cGMP-mediated and ryanodine-sensitive mechanism which requires, at least in part, SKCa and L-type Ca2+ channel activity.  相似文献   

17.
1. It is unknown whether the widely used L-type Ca(2+) channel antagonists diltiazem and nifedipine would block the repolarization K(+) currents, transient outward current (I(to1)) and ultra-rapid delayed rectifier K(+) current (I(Kur)), in human atrium. The present study was to determine the effects of diltiazem and nifedipine on I(to1) and I(Kur) in human atrial myocytes with whole-cell patch-clamp technique. 2. It was found that diltiazem substantially inhibited I(to1) in a concentration-dependent manner, with an IC(50) of 29.2+/-2.4 microM, and nifedipine showed a similar effect (IC(50)=26.8+/-2.1 muM). The two drugs had no effect on voltage-dependent kinetics of the current; however, they accelerated I(to1) inactivation significantly, suggesting an open channel block. 3. In addition, diltiazem and nifedipine suppressed I(Kur) in a concentration-dependent manner (at +50 mV, IC(50)=11.2+/-0.9 and 8.2+/-0.8 microM, respectively). These results indicate that the Ca(2+) channel blockers diltiazem and nifedipine substantially inhibit I(to1) and I(Kur) in human atrial myocytes.  相似文献   

18.
1. Concentration-dependent effects of thymol (1 - 1000 microM) was studied on action potential configuration and ionic currents in isolated canine ventricular cardiomyocytes using conventional microelectrode and patch clamp techniques. 2. Low concentration of thymol (10 microM) removed the notch of the action potential, whereas high concentrations (100 microM or higher) caused an additional shortening of action potential duration accompanied by progressive depression of plateau and reduction of V(max). 3. In the canine cells L-type Ca current (I(Ca)) was decreased by thymol in a concentration-dependent manner (EC(50): 158+/-7 microM, Hill coeff.: 2.96+/-0.43). In addition, thymol (50 - 250 microM) accelerated the inactivation of I(Ca), increased the time constant of recovery from inactivation, shifted the steady-state inactivation curve of I(Ca) leftwards, but voltage dependence of activation remained unaltered. Qualitatively similar results were obtained with thymol in ventricular myocytes isolated from healthy human hearts. 4. Thymol displayed concentration-dependent suppressive effects on potassium currents: the transient outward current, I(to) (EC(50): 60.6+/-11.4 microM, Hill coeff.: 1.03+/-0.11), the rapid component of the delayed rectifier, I(Kr) (EC(50): 63.4+/-6.1 microM, Hill coeff.: 1.29+/-0.15), and the slow component of the delayed rectifier, I(Ks) (EC(50): 202+/-11 microM, Hill coeff.: 0.72+/-0.14), however, K channel kinetics were not much altered by thymol. These effects on Ca and K currents developed rapidly (within 0.5 min) and were readily reversible. 5. In conclusion, thymol suppressed cardiac ionic channels in a concentration-dependent manner, however, both drug-sensitivities as well as the mechanism of action seems to be different when blocking calcium and potassium channels.  相似文献   

19.
This study investigated sex-related differences in rat papillary muscle force generation in response to altered extracellular [Ca2+] ([Ca2+](o), 0.2 to 5.0 mM) and to L-type Ca2+ channel modulators (nifedipine and Bay K8644). At all [Ca2+]o examined, contractile force was significantly greater in male than female papillary muscles. The [Ca2+]o required for 50% maximum force was significantly lower in male [0.34+/-0.06 mM] than female [0.61+/-0.10 mM] papillary muscles. Nifedipine decreased contractile force in papillary muscles of both sexes in a concentration-dependent manner, but the extent of the contractile depression was more marked in male papillary muscles at all nifedipine concentrations examined. BayK 8644 produced a concentration-dependent increase in contractile force in male papillary muscles but notably, not in female papillary muscles. These findings show that sex differences in myocardial mechanical function are associated with sex-specific modulation of L-type Ca2+ channel responsiveness. Thus, the L-type Ca2+ channel could represent an important cellular locus from which sex-based differences in myocardial excitation-contraction coupling arise.  相似文献   

20.
Calcium currents (I(Ca)) in inner hair cells (IHCs) are carried by the Ca(v)1.3 subtype of L-type calcium channels. They play an important role in synaptic transmission of sound-evoked mechanical stimuli. L-type calcium channels are targets of the organic blocker classes dihydropyridines, phenylalkylamines and benzothiazepines. Previously a low sensitivity of the Ca(v)1.3 subtype towards dihydropyridines has been demonstrated. Therefore, this study evaluates the effect of two phenylalkylamines (verapamil and gallopamil) and the benzothiazepine diltiazem on I(Ca) through Ca(v)1.3 channels in mouse IHCs. Whole-cell I(Ca) was measured using the patch-clamp technique in mouse IHCs aged postnatal day 3-7 with 5 mM calcium as a charge carrier. The phenylalkylamines verapamil and gallopamil and the benzothiazepine diltiazem inhibited I(Ca) in IHCs in a concentration-dependent manner. This block was largely reversible. Dose-response curves revealed IC(50) values of 199+/-19 microM for verapamil, 466+/-151 microM for gallopamil and 326+/-67 microM for diltiazem. The inhibition of peak I(Ca) by phenylalkylamines and benzothiazepines was voltage-independent. Verapamil (300 microM) enhanced current inactivation from -20 to +20 mV while diltiazem (300 microM) did so only at very depolarised potentials (+20 mV). In conclusion, the concentrations of phenylalkylamines and benzothiazepine necessary to inhibit 50% of I(Ca) in IHCs were one order larger compared to concentrations which inhibited I(Ca) through Ca(v)1.2 channels in native cells or expression systems. However, inhibitory concentrations were in the same range as those required for block of I(Ca) in turtle hair cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号