首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
粉防已碱是一种新的钙调蛋白拮抗剂,专一性抑制人红细胞膜上依赖CaM的Ca~(2+)-Mg~(2+)-ATPase。在较高浓度下,它也不同程度地抑制Ca~(2+)-Mg~(2+)-ATPase基本活性、Na~+-K~+-ATPase和Mg~(2+)-ATPase的活性。 除CaM外,不饱和脂肪酸和有限水解均导致膜Ca~(2+)-Mg~(2+)-ATPase的活化,所有这些活化作用被Tet在大约相同的浓度范围内抑制,表明Tet除与CaM结合外,也与膜Ca~(2+)-Mg~(2+)-ATPase结合。 Tet具有抗抵渗溶血的性能,反映了拮抗CaM与药物的膜稳定性间存在相关性。  相似文献   

2.
根据Cd~(2+)、Pb~(2+)、Hg~(2+)和Al~(3+)对丹磺酰标记钙调蛋白(D-CaM)的荧先强度、最大发射波长及偏振度的影响来研究它们对CaM及Ca~(2+)-Mg~(2+)-ATPase构象变化的影响.研究发现,无论溶液中是否存在Ca~(2+)-Mg~(2+)-ATPase,Cd~(2+)、Pb~(2+)和Hg~(2+)对D-CaM的荧光最大发射波长、偏振度的影响以Cd~(2+)的最大,Pb~(2+)次之,Hg~(2+)最小,Al~(3+)对D-CaM产生的影响与这三种二价金属离子的并不相同.这证明这几种离子与CaM和Ca~(2+)-Mg~(2+)-ATPase的作用并不遵循同样的机理.  相似文献   

3.
根据Cd~(2+)、Pb~(2+)、Hg~(2+)和Al~(3+)对丹磺酰标记钙调蛋白(D-CaM)的荧先强度、最大发射波长及偏振度的影响来研究它们对CaM及Ca~(2+)-Mg~(2+)-ATPase构象变化的影响.研究发现,无论溶液中是否存在Ca~(2+)-Mg~(2+)-ATPase,Cd~(2+)、Pb~(2+)和Hg~(2+)对D-CaM的荧光最大发射波长、偏振度的影响以Cd~(2+)的最大,Pb~(2+)次之,Hg~(2+)最小,Al~(3+)对D-CaM产生的影响与这三种二价金属离子的并不相同.这证明这几种离子与CaM和Ca~(2+)-Mg~(2+)-ATPase的作用并不遵循同样的机理.  相似文献   

4.
钙调蛋白(CaM)是生物体中一种多功能调节蛋白。已发现多种药物如吩噻嗪、局部麻醉剂、Ca~(2+)通道阻断剂、化合物48/80、长春花生物碱以及粉防己碱和小檗胺等都对CaM有拮抗作用,抑制CaM活化的环核苷酸磷酸二酯酶(PDE)、红细胞膜Ca~(2+)-Mg~(2+)-ATPase等的活性。但是上述药物中,除后三种外,其余的多为合成药。为了进一步从分子水平上探  相似文献   

5.
用500MHzNMR研究了铝与钙调蛋白的相互作用,主要研究了铝对钙调蛋白中芳香氨基酸残基(Tyr,His,Phe)构象变化的影响。实验结果表明,铝在钙饱和的钙调蛋白上存在着特异性的结合位点,结合位点数目至少为两个,第一结合位点可能位于钙调蛋白的N端结构域,第二结合位点靠近Ca~(2+)的Ⅲ结合域。Al~(3+)结合引起脱钙的钙调蛋白的构象变化不同于与Ca~(3+)结合引起的构象变化。Al~(3+)在CaM上的结合位点与Ca~(2+)的并不相同。柠檬酸等有机酸对铝的毒性有保护作用,这种保护作用是由于柠檬酸分子对铝的络合。  相似文献   

6.
血管平滑肌细胞外的Ca~(2+)通过多种通道进入细胞内。Ca~(2+)通道的本质是镶嵌在膜脂质双分子层中的糖蛋白,神经介质和药物可影响Ca~(2+)通道的功能。靠近胞膜的肌质网和胞膜内侧面的高亲和性Ca~(2+)结合位点是血管平滑肌细胞内储存和释放Ca~(2+)的主要部位。胞浆[Ca~(2+)]增高后在钙调蛋白的介导下引起血管收缩。高血压等血管性疾病的发生与其平滑肌细胞的钙动力学异常有关。  相似文献   

7.
绿豆下胚轴切段经红光处理后10min,其线粒体的Ca~(2+)积累下降15%,Ca~(2+)-ATPase 及 Mg~(2+)-ATPase活性也分别下降29%和10%,切段CaM含量增加近1倍。Ca~(2+)存在时,红光能促进线粒体NAD 激酶活性。说明Ca~(2+)-ATPase及一部分Mg~(2+)-ATPase可作为钙泵控制Ca~(2+)进入线粒体。  相似文献   

8.
本文应用光镜和电镜组化方法,对胚胎晚期至生后早期的 Wistar 大鼠气管上皮细胞Ca~(2+)-ATPase 的动态变化进行了观察。结果证实在胚胎期气管上皮细胞侧面膜和表面膜及纤毛细胞的纤毛干处有 Ca~(2+)-ATPase 活性反应产物,提示胚胎期气管上皮细胞之间可能已存在与气管上皮细胞分化、发育密切相关的钙;在生后早期,纤毛细胞的基粒和纤毛小根处出现活性 Ca~(2+)-ATPase,表明生后早期已出现纤毛运动,其对廓清气道具有重要意义。  相似文献   

9.
 用超声波破碎心肌细胞,差速离心法纯化大鼠心肌肌浆网(CSR)。SDS-聚丙烯酰胺凝胶电泳测得Ca~(2+)-ATPase分子量为98kD;电镜观察膜制备为完整的CSR微囊;标志酶哇巴因敏感型Na~(+),K~(+)-ATPase和叠氮化钠敏感型Mg~(2+)-ATPase活性表明膜制备中肌膜含量很低,但仍有线粒体污染。 用~(45)Ca~(2+)示踪微孔滤膜法研究Ca~(2+)跨膜转运,CSRCa~(2+)蓄集最大值为57nmol/mg蛋白。CSR Ca~(2+)-ATPase在4℃—21℃和21℃—49℃两区间反应活化能不同,前者大于后者。酶的最适pH为7.4。以ATP为底物,该酶有两个表观Km值:Km_1为3.7μmol/LKm_2为713μmol/L。  相似文献   

10.
本文测定了数种蝙蝠葛碱衍生物对钙调素(CaM)激活的人红细胞膜Ca~(2+)-Mg~(2+)-ATPase活力的影响。结果表明,这些化合物对该酶都有不同程度的抑制作用,其机制表现为竞争性抑制,过量的CaM能完全逆转这些化合物所引起的抑制。当Ca~(2+)-Mg~(2+)-ATPase被胰蛋白酶(trypsin)限制性酶解完全活化后,其活力不再受CaM激活,但仍被这些化合物所抑制。  相似文献   

11.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

12.
Synaptic plasma membranes isolated from rat brain exhibited a Ca2+ transport process that was strictly dependent on the presence of Mg2+ and activated by ATP hydrolysis. The characteristics of this ATP-activated transport process included a high affinity for Ca2+ and ATP with the Kact for these two substrates being 0.7 and 5 microM, respectively, and a lower affinity for Mg2+, Kact = 54 microM. The estimated constants for ATP-activated Ca2+ transport into synaptic membrane vesicles and the dependence of such transport on Mg2+ were indicative that such transport was related to the previously described high affinity (Ca2+ + Mg2+)-ATPase in synaptic membranes. An ATP- and Mg2+-dependent Ca2+ transport process with very similar kinetic characteristics was present also in a general microsomal membrane fraction obtained from brain tissue. The synaptic and microsomal membrane ATP-activated transport processes exhibited differences in their sensitivity to vanadate inhibition. Interaction with vanadate was fairly complex and best analyzed by a two-component model. Thus, the estimated Ki values for vanadate were 0.2 and 6.6 microM for the synaptic membranes and 0.7 and 13.8 microM for the microsomes. Since the microsomal membranes contain a substantial population of intraneuronal endoplasmic reticulum vesicles, the effects of vanadate on Ca2+ transport into intraneuronal membrane organelles, other than mitochondria, was determined in saponin-permeabilized synaptosomes. The estimated Ki values for vanadate inhibition of Ca2+ transport activity were 0.7 and 13 microM. The accumulation of Ca2+ into synaptic plasma membrane vesicles was readily reversed by activation of the Na+-Ca2+ exchange carrier, whereas the Ca2+ associated with intrasynaptosomal organelles was not affected by changes in [Na+]. Thus, there are at least two ATP-dependent Ca2+ transporting processes localized on two distinct neuronal membranes, one on the plasma membrane and the second on intraneuronal membranes.  相似文献   

13.
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems.  相似文献   

14.
Calcium-Activated ATPases in Presynaptic Nerve Endings   总被引:7,自引:5,他引:2  
We studied the properties of calcium-activated ATPases present in preparations of isolated presynaptic nerve ending (synaptosome) and its subfractions from mouse brain. ATPase activity in the preparation was stimulated by Ca2+ and by Mg2+, but not by Na+ and K+, when each was added alone. The substrate specificities were found to be similar. The ATPases hydrolyzed only the high-energy phosphate bond and similar activity was exhibited for all nucleoside triphosphates tested (ATP, CTP, GTP, UTP). Moreover, the enzymes were insensitive to mitochondrial markers and to ouabain, but were inhibited by La3+. La3+ produced uncompetitive inhibition of Ca2+-ATPase in intact synaptosomes. Inhibition by La3+ was greatly increased after lysis of the synaptosomes, suggesting that the active sites of the enzymes may be on the cytosolic face of the membranes. The Ca2+-ATPase activity in synaptosomes was increased by increasing concentrations of external K+, suggesting that Ca2+ influx may be involved The Ca2+-ATPase in synaptosomal plasma membranes and synaptic vesicles had higher specific activities than those of intact synaptosomes and were activated, both in the presence and the absence of Mg2+, by Ca2+ concentrations approximating the intracellular level (10(-7) M). It is concluded that the nonmitochondrial synaptosomal Ca2+-ATPase may play an important role in the regulation of intracellular Ca2+.  相似文献   

15.
An inhibitor protein of synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was purified to apparent homogeneity from rat cerebrum by a molecular weight cut followed by chromatography of cytosol proteins with molecular weights between 10 000 and 3500 on DEAE-Sephadex at pH 5.2. The inhibitor could be partially inactivated by proteinases and dithiothreitol, but was heat-stable. Gel filtration gave a molecular weight of about 6000. Like the (Ca2+ + Mg2+)-ATPase inhibitor protein isolated from erythrocytes, the inhibitor from brain contains a characteristic high proportion of glutamic acid (36%) and glycine (37%) residues. Synaptic plasma membrane Mg2+-ATPase and microsomal membrane (Ca2+ + Mg2+)-ATPase did not respond to the inhibitor. Synaptic plasma membrane and erythrocyte membrane (Ca2+ + Mg2+)-ATPases, however, were affected. Inhibitory influence on synaptic membrane (Ca2+ + Mg2+)-ATPase was reversible, since inhibition could be relieved upon removal of inhibitor from saturable sites on the membrane. The inhibitor is not a calmodulin-binding protein, since the concentration of calmodulin for half-maximal activation of the ATPase was unaffected by its presence. Mode of inhibition of the (Ca2+ + Mg2+)-ATPase by the inhibitor was non-competitive.  相似文献   

16.
Horn JL  Janicki PK  Franks JJ 《Life sciences》1999,64(14):PL179-PL183
Plasma membrane Ca2+-ATPase (PMCA), a regulator of intracellular calcium, is inhibited by volatile anesthetics and by xenon and nitrous oxide. Response of a cellular system to anesthetics, particularly to volatile agents, raises the question of non-specific, even toxic, side effects unrelated to anesthetic action. Compounds with chemical and physical properties similar to halogenated anesthetics, but which lack anesthetic effect, have been used to address this question. We have compared the effects of halothane and flurothyl, a non-anesthetic fluorinated ether, on PMCA Ca2+ transport across isolated brain synaptic plasma membranes (SPM). Flurothyl, at concentrations predicted by the Meyer-Overton curve to range from 0.4 to 2.6 MAC (minimum alveolar concentration), had no significant on PMCA activity. In contrast halothane, 1.3 MAC, reduced Ca2+ transport 30 to 40%. These findings provide further evidence for a specific effect of inhalation anesthetics on neuronal plasma membrane Ca2+-ATPase.  相似文献   

17.
The rate of Mg2+, Ca2+-ATPase reaction and ATP-dependent Ca2+ accumulation in a preparation of plasma membranes from brain synaptosomes increases 60 min following whole-body X-irradiation of rats with a dose of 0.21 C/kg, a calcium sensitivity of both processes being increased. A unidirectional change in their kinetics indicates the early radiosensitivity of Ca2+ transfer systems in the brain synaptosome membranes. There is an increase in the availability of SH-groups of membrane preparation proteins for SH-reagents and in the sensitivity of Mg2+, Ca2+-ATPase reaction and ATP-dependent Ca2+ accumulation to trifluoperazine, a calmodulin inhibitor. Both processes lose their ability to be activated by exogenous calmodulin. It is suggested that at an early stage of radiation affection, a change occurs in the molecular organization of the ATPase-calmodulin membrane complex in plasma membranes of rat brain synaptosomes.  相似文献   

18.
Previous studies have identified a calmodulin-stimulated ATP-dependent Ca2+ pump as the major Ca2+ efflux pathway in enterocytes. Here, we developed methods to quantify the number of Ca2+ pumps in basolateral and intracellular membranes from porcine duodenum. By the use of a pig strain with a genetic defect in renal 1 alpha-hydroxylase, we were able to investigate the influence of 1,25(OH)2D3-deficiency on the number of Ca(2+)-ATPases in porcine duodenum. The amount of Ca(2+)-ATPase in isolated basolateral membranes was 5.5 +/- 0.7 micrograms/mg protein, while the Vmax of ATP-dependent Ca2+ transport into inside-out resealed basolateral membrane vesicles was 2.6 +/- 0.4 nmol/mg protein per min. From these data we estimated roughly about 95 x 10(3) plasma membrane Ca2+ pump sites per enterocyte. In addition, the amount of intracellular Ca(2+)-ATPase in microsomal fractions was 0.41 +/- 0.02 microgram/mg protein. Comparison of these parameters between control and rachitic animals showed that Ca2+ pump capacities in both basolateral membranes and microsomal fractions of porcine duodenum are not influenced by 1,25(OH)2D3-deficiency. In conclusion, stimulatory effects of 1,25(OH)2D3 on intestinal Ca2+ transport most likely result from specific effects on apical influx and facilitation of cytosolic Ca2+ diffusion by Ca(2+)-binding proteins and not from an increase in Ca2+ pumping capacity in basolateral membranes.  相似文献   

19.
The Na+, K+-ATPase activity in the homogenate and in subcellular fractions of different parts of the brain of adult and old rats was studied in comparison. The content of cholesterol in the above fractions was also determined. In old age the Na+, K+-ATPase activity in the homogenate and microsomal fraction of the cerebral hemispheres' cortex decreases, while the Mg2+-ATPase activity in the cortex microsomal fraction increases. The age-related Na+, K+- and Mg2+-ATPase activity in the myelin of the stem in the synaptic plasma membranes of hemispheres and the brain stem remains unchanged whereas in the myelin fraction of hemispheres it grows. The content of cholesterol in the brain of old rats as compared with adult ones increases in the microsomal fraction and remains unchanged in synaptic membranes. The possible role of age-related modification of lipid component of plasma membranes in the above changes of Na+, K+-ATPase activity is discussed.  相似文献   

20.
The mechanism of inhibition of Ca2+-transport activity of rabbit sarcoplasmic reticulum Ca 2+-ATPase (SERCA) by anisodamine (a drug isolated from a medicinal herb Hyoscyamuns niger L) was investigated by using ANS (1-anilino-8-naphthalenesulfonate) fluorescence probe, intrinsic fluorescence quenching and Ca 2+-transport activity assays. The number of ANS binding sites for apo Ca2+-ATPase was determined as 8, using a multiple-identical binding site model. Both anisodamine and Ca2+ at millimolar level enhanced the ANS binding fluorescence intensities. Only anisodamine increased the number of ANS molecules bound by SERCA from 8 to 14. The dissociation constants of ANS to the enzyme without any ligand, with 30 mM anisodamine and with 15 mM Ca 2 were found to be 53.0 microM, 85.0 microM and 50.1 microM, respectively. Both anisodamine and Ca2+ enhanced the ANS binding fluorescenc with apparent dissociation constants of 7.6 mM and 2.3 mM, respectively, at a constant concentration of the enzyme. Binding of anisodamine significantly decreased the binding capacity of Ca2+ with the dissociation constant of 9.5 mM, but binding of Ca2+ had no obvious effect on binding of anisodamine. Intrinsic fluorescence quenching and Ca2+-transport activity assays gave the dissociation constants of anisodamine to SERCA as 9.7 and 5.4 mM, respectively, which were consistent with those obtained from ANS-binding fluorescence changes during titration of SERCA with anisodamine and anisodamine + 15 mM Ca2+, respectively. The results suggest that anisodamine regulates Ca2+-transport activity of the enzyme, by stabilizing the trans-membrane domain in an expanded, inactive conformation, at least at its annular ring region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号