首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p.DNA. Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p.DNA.Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.  相似文献   

2.
TEL2 is required for telomere length regulation and viability in Saccharomyces cerevisiae. To investigate the mechanism by which Tel2p regulates telomere length, the majority (65%) of the TEL2 ORF was fused to the 3'-end of the gene for maltose binding protein, expressed in bacteria and the purified protein used in DNA binding studies. Rap1p, the major yeast telomere binding protein, recognizes a 13 bp duplex site 5'-GGTGTGTGGGTGT-3' in yeast telomeric DNA with high affinity. Gel shift experiments revealed that the MBP-Tel2p fusion binds the double-stranded yeast telomeric Rap1p site in a sequence-specific manner. Analysis of mutated sites showed that MBP-Tel2p could bind 5'-GTGTGTGG-3' within this 13 bp site. Methylation interference analysis revealed that Tel2p contacts the 5'-terminal guanine in the major groove. MBP-Tel2p did not bind duplex telomeric DNA repeats from vertebrates, Tetrahymena or Oxytricha. These results suggest that Tel2p is a DNA binding protein that recognizes yeast telomeric DNA.  相似文献   

3.
Saccharomyces cerevisiae telomeres consist of a continuous 325 +/- 75-bp tract of the heterogeneous repeat TG1-3 which contains irregularly spaced, high-affinity sites for the protein Rap1p. Yeast cells monitor or count the number of telomeric Rap1p molecules in a negative feedback mechanism which modulates telomere length. To investigate the mechanism by which Rap1p molecules are counted, the continuous telomeric TG1-3 sequences were divided into internal TG1-3 sequences and a terminal tract separated by nontelomeric spacers of different lengths. While all of the internal sequences were counted as part of the terminal tract across a 38-bp spacer, a 138-bp disruption completely prevented the internal TG1-3 sequences from being considered part of the telomere and defined the terminal tract as a discrete entity separate from the subtelomeric sequences. We also used regularly spaced arrays of six Rap1p sites internal to the terminal TG1-3 repeats to show that each Rap1p molecule was counted as about 19 bp of TG1-3 in vivo and that cells could count Rap1p molecules with different spacings between tandem sites. As previous in vitro experiments had shown that telomeric Rap1p sites occur about once every 18 bp, all Rap1p molecules at the junction of telomeric and nontelomeric chromatin (the telomere-nontelomere junction) must participate in telomere length measurement. The conserved arrangement of these six Rap1p molecules at the telomere-nontelomere junction in independent transformants also caused the elongated TG1-3 tracts to be maintained at nearly identical lengths, showing that sequences at the telomere-nontelomere junction had an effect on length regulation. These results can be explained by a model in which telomeres beyond a threshold length form a folded structure that links the chromosome terminus to the telomere-nontelomere junction and prevents telomere elongation.  相似文献   

4.
One- and two-dimensional 1H NMR spectroscopy were used to characterize the binding of a homodimeric thiazole orange dye, 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)-bis-4-(3 -methyl-2,3-dihydro-(benzo- 1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to various double-stranded DNA oligonucleotides containing symmetric (5'-pyr-pyr-pu-pu-3')2 or (5'-pu-pu-pyr-pyr-3')2 sequences. It was found that TOTO binds preferentially to oligonucleotides containing a (5'-CTAG-3')2 or a (5'-CCGG-3')2 sequence. Binding to the (5'-CCGG-3')2 sequence is less favored than to the (5'-CTAG-3')2 sequence. The complexes of TOTO with d(CGCTAGCGCTAGCG)2 (10) and d(CGCTAGCCGGCG):d(CGCCGGCTAGCG) (11) oligonucleotides, each containing two preferential binding sites, was also examined. In both cases TOTO forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes in ratios dependent on the relative amount of TOTO and the oligonucleotides in the sample. Binding of TOTO to the two oligonucleotides is sequence selective at the (5'-CTAG-3')2 and (5'-CCGG-3')2 sites. The 1H NMR spectra of both the 1:2 complexes and the three different 1:1 complexes have been assigned. A slight negative cooperativity is observed in formation of the 1:2 complexes. The ratio between the two different 1:1 complexes formed with oligonucleotide 11 is 2.4 in favor of binding to the (5'-CTAG-3')2 site. This is very similar to results obtained when the two sites are in different oligonucleotides. Thus the distribution of TOTO among the (5'-CTAG-3')2 and (5'-CCGG-3')2 sites is independent of whether the two sites are in the same or two different oligonucleotides.  相似文献   

5.
Telomere length is maintained through a dynamic balance between addition and loss of the terminal telomeric DNA. Normal telomere length regulation requires telomerase as well as a telomeric protein-DNA complex. Previous work has provided evidence that in the budding yeasts Kluyveromyces lactis and Saccharomyces cerevisiae, the telomeric double-stranded DNA binding protein Rap1p negatively regulates telomere length, in part by nucleating, by its C-terminal tail, a higher-order DNA binding protein complex that presumably limits access of telomerase to the chromosome end. Here we show that in K. lactis, truncating the Rap1p C-terminal tail (Rap1p-DeltaC mutant) accelerates telomeric repeat turnover in the distal region of the telomere. In addition, combining the rap1-DeltaC mutation with a telomerase template mutation (ter1-kpn), which directs the addition of mutated telomeric DNA repeats to telomeres, synergistically caused an immediate loss of telomere length regulation. Capping of the unregulated telomeres of these double mutants with functionally wild-type repeats restored telomere length control. We propose that the rate of terminal telomere turnover is controlled by Rap1p specifically through its interactions with the most distal telomeric repeats.  相似文献   

6.
The Saccharomyces cerevisiae Rap1 protein binds with high affinity to sites within the poly(C(1-3)A) tracts at telomeres, where it plays a role in both telomere length regulation and the initiation of telomeric silencing. Rap1p initiates silencing at telomeres by interacting through its carboxy-terminal domain with Sir3p and Sir4p, both of which are required for repression. This same domain of Rap1p also negatively regulates telomere elongation, through an unknown mechanism. We have identified a new Rap1-interacting factor (Rif2p) that plays a role in telomere length regulation. Rif2p has considerable functional similarities with a Rap1p-interacting factor (Rif1p) identified previously. Mutations in RIF1 or RIF2 (unlike mutations in the silencing genes SIR3 and SIR4) result in moderate telomere elongation and improved telomeric silencing. However, deletion of both RIF1 and RIF2 in the same cell results in a dramatic increase in telomere length, similar to that seen with a carboxy-terminal truncation of Rap1p. In addition, overexpression of either RIF1 or RIF2 decreases telomere length, and co-overexpression of these proteins can reverse the telomere elongation effect of overexpression of the Rap1p carboxyl terminus. Finally, we show that Rif1p and Rif2p can interact with each other in vivo. These results suggest that telomere length regulation is mediated by a protein complex consisting of Rif1p and Rif2p, each of which has distinct regulatory functions. One role of Rap1p in telomere length regulation is to recruit these proteins to the telomeres.  相似文献   

7.
BACKGROUND: Counteraction between activators and repressors is crucial for the regulation of a number of cell-specific enhancers, where an activator and a repressor are mutually competitive in binding to the same site. DeltaEF1 is a repressor protein of delta1-crystallin minimal enhancer DC5 binding at the CACCT site, and inhibits activator deltaEF3 from binding to the overlapped site. It has two zinc finger clusters N-fin and C-fin, close to N- and C-termini, respectively, and a homeodomain in the middle. deltaEF1 also binds to the E2-box sequence CACCTG, and represses E2-box-dependent enhancers. RESULTS: The mechanism of the repressor action of deltaEF1 was investigated by examining various deletion mutants of deltaEF1 for their activity to repress delta1-crystallin enhancer fragment HN which contained DC5 sequence and an additional activator site. Both zinc finger clusters were found to be essential for DNA binding and repression, but the homeodomain was not. In addition, the NR domain close to the N-terminus was required for full repression. The NR domain showed active repression when fused to the Gal4 DNA binding domain. Active repression by deltaEF1, dependent on the NR domain, was also demonstrated in a situation where the binding sites of deltaEF1 and deltaEF3 were separated. N-fin and C-fin in their isolated forms bind the 5'-(T/C)ACCTG-3' and 5'-(t/C)ACCT-3' sequences, respectively, while the homeodomain showed no DNA binding activity. An analysis of DNA binding of the delta(Int)F form, having both N-fin and C-fin, indicated that a single DNA binding domain is assembled from two zinc finger clusters. CONCLUSION: Two mechanisms are involved in the repressor action of deltaEF1. First, a binding site competition with an activator which depends on the integrity of both zinc finger clusters, and second, an active repression to silence an enhancer which is attributed to the NR domain.  相似文献   

8.
Budding yeast (Saccharomyces cerevisiae) Rap1p has been expressed in fission yeast (Schizosaccharomyces pombe) under the control of the regulatable fructose bisphosphatase (fbp) promoter. When the fbp promoter was derepressed, cells containing the complete RAP1 gene failed to show any significant growth, suggesting that Rap1p is toxic. A derivative of Rap1p that has a temperature-sensitive mutation in the DNA-binding domain was not toxic in cells grown at 37 degrees C, a temperature at which DNA binding by rap1p(ts) is severely inhibited. Removal of a short region downstream of the DNA-binding domain, including a region previously shown to be essential for Rap1p toxicity in budding yeast, also abolished the toxic effect. The toxic effect of Rap1p has therefore been conserved between two distantly related yeasts. In budding yeast, overexpression of Rap1p also caused changes to the lengths of the telomeric repeats. No effects on telomeres were detected in fission yeast.  相似文献   

9.
10.
We have used circular permutation assays to determine the extent and location of the DNA bend induced by the DNA binding domain of human wild type p53 (p53DBD) upon binding to several naturally occurring DNA response elements. We have found that p53DBD binding induces axial bending in all of the response elements investigated. In particular, response elements having a d(CATG) sequence at the junction of two consensus pentamers in each half-site favor highly bent complexes (bending angle is approximately 50 degrees ), whereas response elements having d(CTTG) bases at this position are less bent (bending angles from approximately 37 to approximately 25 degrees ). Quantitative electrophoretic mobility shift assays of different complexes show a direct correlation between the DNA bending angle and the binding affinity of the p53DBD with the response elements, i.e. the greater the stability of the complex, the more the DNA is bent by p53DBD binding. The study provides evidence that the energetics of DNA bending, as determined by the presence or absence of flexible sites in the response elements, may contribute significantly to the overall binding affinity of the p53DBD for different sequences. The results therefore suggest that both the structure and the stability of the p53-DNA complex may vary with different response elements. This variability may be correlated with variability in p53 function.  相似文献   

11.
GATA family proteins Gln3p, Gat1p, Dal80p, and Deh1p mediate the regulation of nitrogen catabolite repression (NCR)-sensitive gene expression in Saccharomyces cerevisiae. Thus far, Gln3p, Dal80p, and Deh1p have been shown to bind to GATA sequences in NCR-sensitive promoters, in some cases to exactly the same GATA sequences. A minimal Gln3p binding site consists of a single GATA sequence, whereas a Dal80p binding site consists of two GATA sequences in specific orientation, 15 to 35 bp apart, suggesting that Dal80p may bind to DNA as a dimer. Additionally, both Dal80p and Deh1p are predicted to contain a leucine zipper motif near their C termini. Therefore, we tested whether they could form homo- and/or heterodimers in two-hybrid assays. We show that Dal80p-Dal80p, Dal80p-Dal80pLZ (leucine zipper), Dal80pLZ-Dal80pLZ, Dal80p-Deh1pLZ, Dal80pLZ-Deh1pLZ, and Deh1pLZ-Deh1pLZ complexes can form. Dal80p-Dal80p and Dal80pLZ-Dal80pLZ complexes yield 5- to 10-fold stronger signals than the other possible dimers. If Dal80p and Deh1p bind to DNA only after dimerization, then the difference in ability to form complexes could significantly affect their affinity for binding DNA and thus the degree of regulation exerted by each of the two factors.  相似文献   

12.
13.
A rat liver nuclear protein, unimolecular quadruplex telomere-binding protein 25, (uqTBP25) is described that binds tightly and specifically single-stranded and unimolecular tetraplex forms of the vertebrate telomeric DNA sequence 5'-d(TTAGGG)n-3'. A near homogeneous uqTBP25 was purified by ammonium sulfate precipitation, chromatographic separation from other DNA binding proteins, and three steps of column chromatography. SDS-polyacrylamide gel electrophoresis and Superdex copyright 200 gel filtration disclosed for uqTBP25 subunit and native Mr values of 25.4 +/- 0.5 and 25.0 kDa, respectively. Sequences of uqTBP25 tryptic peptides were closely homologous, but not identical, to heterogeneous nuclear ribonucleoprotein A1, heterogeneous nuclear ribonucleoprotein A2/B1, and single-stranded DNA-binding proteins UP1 and HDP-1. Complexes of uqTBP25 with single-stranded or unimolecular quadruplex 5'-d(TTAGGG)4-3', respectively, had dissociation constants, Kd, of 2.2 or 13.4 nM. Relative to d(TTAGGG)4, complexes with 5'-r(UUAGGG)4-3', blunt-ended duplex telomeric DNA, or quadruplex telomeric DNA had >10 to >250-fold higher Kd values. Single base alterations within the d(TTAGGG) repeat increased the Kd of complexes with uqTBP25 by 9-215-fold. Association with uqTBP25 protected d(TTAGGG)4 against nuclease digestion, suggesting a potential role for the protein in telomeric DNA transactions.  相似文献   

14.
15.
DNA-binding properties of the yeast transcriptional activator, Gcr1p   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae the GCRI gene product is required for high-level expression of genes encoding glycolytic enzymes. In this communication, we extend our analysis of the DNA binding properties of Gcr1p. The DNA-binding domain of Gcr1p binds DNA with high affinity. The apparent dissociation constant of the Gcr1p DNA-binding domain for one of its specific binding sites (TTTCAGCTTCCTCTAT) is 2.9 x 10(-10) M. However, competition experiments showed that Gcr1p binds this site in vitro with a low degree of specificity. We measured a 33-fold difference between the ability of specific competitor and DNA of random sequence to inhibit the formation of nucleoprotein complexes between Gcr1p and a radiolabeled DNA probe containing its binding site. DNA band-shift experiments, utilizing probes of constant length in which the positions of Gcr1p-binding sites are varied relative to the ends, indicated that Gcr1p-DNA nucleoprotein complexes contain bent DNA. The implications of these findings in terms of the combinatorial interactions that occur at the upstream activating sequence elements of genes encoding glycolytic enzymes are discussed.  相似文献   

16.
17.
The viral polymerase and several cis-acting sequences are essential for hepadnaviral DNA replication, but additional host factors are likely to be involved in this process. We previously identified two sequences, UBS and DBS (upstream and downstream binding sites), present in multiple copies in and adjacent to the pregenomic RNA (pgRNA) terminal redundancy, that were specifically recognized by a 65-kDa host factor, p65. The possible roles of these two sequences in hepatitis B virus (HBV) replication were investigated in the context of the intact viral genome. UBS is contained within the terminal redundancy of pgRNA, and the 5' copy of this sequence is essential for viral replication. Mutations within the central core of UBS ablate p65 binding and selectively block synthesis of plus-strand DNA, without affecting RNA packaging or minus-strand synthesis. The DBS sequence, which is located downstream of the pgRNA polyadenylation site, overlaps the core (C) protein coding region. All mutations introduced into this site severely affected viral replication. However, these effects were shown to result from dominant negative effects of mutant core polypeptides rather than from cis-acting effects on RNA recognition. Thus, the 5' UBS but not DBS sites play important cis-acting roles in HBV DNA replication; however, the involvement of p65 in these roles remains a matter for investigation.  相似文献   

18.
19.
Interactions of the beta subunit of the Oxytricha nova telomere binding protein with the telomeric DNA sequences, d(T4G4)2 and dT6(T4G4)2, have been investigated in vitro using Raman and fluorescence spectroscopies. Raman difference spectra show that the beta subunit binds to both d(T4G4)2 and dT6(T4G4)2 but promotes the formation of a parallel-stranded quadruplex only in dT6(T4G4)2, thus demonstrating the importance of the telomeric 5' tail for in vitro recognition and guanine quadruplex formation. While d(T4G4)2 is not a suitable substrate for quadruplex promotion by the beta subunit, the Raman spectra reveal other structural rearrangements of this DNA strand upon beta subunit binding, including changes in guanine glycosyl torsion angles from syn to anti and disruption of carbonyl hydrogen-bonding interactions. The conformation of d(T4G4)2 in the beta:d(T4G4)2 complex is suggested as a plausible intermediate along the pathway to formation of the parallel-stranded guanine quadruplex. Fluorescence band shifts indicate that at least one of the two tryptophans of the beta subunit is shielded from solvent as a consequence of DNA binding in both the beta:dT6(T4G4)2 and beta:d(T4G4)2 complexes. However, the Raman spectra of these complexes suggest no significant changes in the beta subunit secondary structure attendant with DNA binding. A model for beta subunit binding by Oxytricha telomeric DNA sequences and a mechanism for quadruplex formation are proposed. A key feature of this model is the use of a telomeric hairpin secondary structure as the recognition motif.  相似文献   

20.
The Mac1 protein in Saccharomyces cerevisiae is required for the expression CTR1 and FRE1, which, respectively, encode the copper permease and metal reductase that participate in copper uptake. Mac1p binds to a core GCTC sequence present as a repeated unit in the promoters of both genes. We show here that Mac1p DNA binding required an intact N-terminal protein domain that includes a likely zinc finger motif. This binding was enhanced by the presence of a TATTT sequence immediately 5' to the core GCTC, in contrast to a TTTTT one. This increased binding was demonstrated clearly in vitro in electrophoretic mobility shift assays that showed Mac1p.DNA complex formation to a single TATTTGCTC element but not to a TTTTTGCTC one. Furthermore, the fraction of Mac1p in a ternary (Mac1p)2.DNA complex in comparison to a binary Mac1p.DNA complex increased when the DNA included two TATTTGCTC elements. A similar increase in ternary complex formation was demonstrated upon homologous mutation of the FRE1 Mac1p-dependent promoter element. The in vivo importance of this ternary complex formation at the CTR1 promoter was indicated by the stronger trans-activity of this promoter mutated to contain two TATTT elements and the attenuated activity of a mutant promoter containing two TTTTT elements that in vitro supported only a weak ternary complex signal in the shift assay. The stronger binding to TATTT appeared due to a more favorable protein contact with adenine in comparison to thymine at this position. An in vivo two-hybrid analysis demonstrated a Mac1p-Mac1p protein-protein interaction. This Mac1p-Mac1p interaction may promote (Mac1p)2.DNA ternary complex formation at Mac1p-responsive upstream activating sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号