首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the method of determining the force constant and displacement sensitivity of piezoresistive Wheatstone bridge cantilevers applied in scanning probe microscopy (SPM). In the procedure presented here, the force constant for beams with various geometry is determined based on resonance frequency measurement. The displacement sensitivity is measured by the deflection of the cantilever with the calibrated piezoactuator stage. Preliminary results show that our method is capable of measuring the force constant of Wheatstone bridge cantilevers with an accuracy of better than 5% and this is used as feedback for improvement of sensor micromachining process.  相似文献   

2.
A self-temperature-compensated micromechanical bridge resonator   总被引:1,自引:0,他引:1  
A self-temperature-compensated micromechanical bridge resonator is designed and fabricated. The resonator comprises an electrothermal excitation/piezoresistive detection Si/SiO2 bridge resonator and a cantilever thermometer. Both bridge and cantilever have approximately equal thickness and fabricate simultaneously with same materials by identical process. The temperature drift of bridge resonator’ resonance frequency is compensated by changing voltage applied on the Wheatstone bridge to an appropriated value determined by the output voltage of cantilever thermometer. The temperature drift of resonance frequency drops down two orders of magnitude compared with that of uncompensated resonator.  相似文献   

3.
Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.  相似文献   

4.
The fabrication of silicon cantilever‐based scanning near‐field optical microscope probes with fully aluminium‐coated quartz tips was optimized to increase production yield. Different cantilever designs for dynamic‐ and contact‐mode force feedback were implemented. Light transmission through the tips was investigated experimentally in terms of the metal coating and the tip cone‐angle. We found that transmittance varies with the skin depth of the metal coating and is inverse to the cone angle, meaning that slender tips showed higher transmission. Near‐field optical images of individual fluorescing molecules showed a resolution < 100 nm. Scanning electron microscopy images of tips before and after scanning near‐field optical microscope imaging, and transmission electron microscopy analysis of tips before and after illumination, together with measurements performed with a miniaturized thermocouple showed no evidence of mechanical defect or orifice formation by thermal effects.  相似文献   

5.
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or "clamps" the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.  相似文献   

6.
为了在微尺度范围内实现对目标对象进行柔性施力、推拉等一系列微纳操作,提出一种通过生成控制单个微尺度气泡直接与目标对象进行微纳操作的方法。当用气泡作为执行器对目标对象施力时,由于气体的可压缩性,气泡会被挤压变形,实现了柔性施力的过程。首先通过毛细管连接气泵的方式在液体环境下生成单个微尺度气泡,并定性分析气压法生成控制气泡变化的过程;随后,为了验证气泡可以作为执行器对研究对象进行施力,实验以一个微型悬臂梁作为参照物,气泡作为执行器对悬臂梁的末端施力,通过悬臂梁的形变来估算气泡的施力值。对实验数据进行分析,得出气泡作为执行器特性以及气泡的形变与其输出力之间的线性关系。  相似文献   

7.
一种微开关悬臂梁的静力变形分析模型及其应用   总被引:4,自引:1,他引:3  
丁芳  曹天捷 《机械强度》2005,27(4):460-464
建立一种微开关悬臂梁的静力变形分析模型,该模型将微开关悬臂梁的受力变形分为三个阶段,受电场力作用的悬臂梁阶段,受电场力作用的一端固支、另一端铰支的单跨梁阶段以及受电场力和集中力联合作用而保持自由端有指定的位移和零转角阶段。第二阶段中铰支端支反力的大小以及第三阶段中集中力的大小和作用位置均与电场力的驱动电压有关;同时文中将求解微开关悬臂梁挠度的高阶微分方程问题转化为含有未知初始条件的一阶微分方程组问题。在实例中,设计一种求解未知初始条件的迭代方法,并给出部分计算结果,从中可得出一些有益的结论。  相似文献   

8.
A microlateral force sensor (MLFS) was developed and evaluated using atomic force microscopy (AFM). The sensor was attached to a sensing table supported by a suspension system. The lateral motion of the sensing table was activated by a comb actuator. The driving voltage to the comb actuator was controlled to maintain a constant position of the sensing table by detecting the tunneling current at a detector, which consisted of two electrodes where the bias voltage was applied. An AFM was used to apply a lateral force to the sensing table of the sensor. When the probe of a cantilever was pressed against the sensing table and a raster scanning was conducted, the driving voltage of the comb actuator changed to compensate the friction force between the probe and sensing table. AFM measurements of an asperity array on the sensing table were conducted, and a lateral force microscopy image (LFM) was obtained from the change in driving voltage. The image by MLFS was very similar to the LFM image that was conventionally obtained from torsion of the cantilever. The LFM image strongly correlated with the gradient image calculated from the AFM topographic image. The force sensitivity of the MLFS was determined by comparing the LFM image obtained by using the MLFS with the tangential force derived from the gradient of the AFM image.  相似文献   

9.
Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.  相似文献   

10.
基于硅桥的新型甲醛气体传感器的研究   总被引:1,自引:0,他引:1  
提出了一种基于高分子薄膜溶胀效应的新型MEMS压阻式甲醛气体传感器,其结构由嵌入惠斯通电桥的硅桥和一层改性丙烯酸酯气敏薄膜构成,敏感薄膜因吸收甲醛气体发生溶胀使硅桥上的惠斯通电桥产生输出电压,从而实现对甲醛气体的检测.基于弹性力学薄板原理构建了该气体传感器中硅桥与改性丙烯酸酯薄膜相互作用的模型,并推导出传感器的输出公式.实验结果验证了理论分析模型,实验结果表明该传感器有很好的线性,选择性.实验测得该传感器灵敏度为0.975×106ecr,分辨率为10×10-6,响应时间和恢复时间分别为50s和65s.该传感器结构简单、无须加热,工艺成熟、成本低,应用MEMS 工艺技术可实现与信号处理电路的集成.  相似文献   

11.
Micic M  Chen A  Leblanc RM  Moy VT 《Scanning》1999,21(6):394-397
Protein-functionalized atomic force microscopy (AFM) tips have been used to investigate the interaction of individual ligand-receptor complexes. Herein we present results from scanning electron microscopy (SEM) studies of protein-functionalized AFM cantilever tips. The goals of this study were (1) to examine the surface morphology of protein-coated AFM tips and (2) to determine the stability of the coated tips. Based on SEM images, we found that bovine serum albumin (BSA) in solution spontaneously adsorbed onto the surface of silicon nitride cantilevers, forming a uniform protein layer over the surface. Additional protein layers deposited over the initial BSA-coated surface did not significantly alter the surface morphology. However, we found that avidin-functionalized tips were contaminated with debris after a series of force measurements with biotinylated agarose beads. The bound debris presumably originated from the transfer of material from the agarose bead. This observation is consistent with the observed deterioration of functional activity as measured in ligand-receptor binding force experiments.  相似文献   

12.
The results of investigations aimed at the development and testing of diamond probes for scanning atomic-force microscopy are presented. Plasmochemical deposition of diamond polycrystalline films and selective thermal oxidation were used to manufacture diamond probes. The obtained single-crystal diamond pyramidal tips of micron size had a radius of curvature of 2–20 nm at the top. The diamond tips were attached to a cantilever with an epoxy adhesive and then tested as probes in scanning atomic-force microscopy. Tests have shown that the manufactured diamond probes have appreciable advantages over conventional probes.  相似文献   

13.
Instrumented anthropomorphic dummy surrogates of humans have been used in automobile occupant crash protection research and development programs for many years. Lower leg instrumentation provides the safety engineer with a valuable tool for gaining otherwise unavailable insights into occupant restraint system performance. Instrumentation described in this paper constitutes an advancement of the state of the art of dummy test technology. A more comprehensive study of crash victim leg loadings is possible with only the traditional femur (upper leg) axial force transducer. Each lower leg has five electrical resistance strain gage circuits to monitor orthogonal bending moments and axial force. Stress analysis and Wheatstone bridge theories are combined in the paper to define strain gage locations and predict transducer sensitivities. Transducer fabrication and calibration precedures are also discussed.  相似文献   

14.
针对目前压电驱动器主要使用锯齿波这种非对称波电信号驱动压电晶体实现驱动的现状,设计了非对称夹持构件,提出了非对称夹持压电双晶片振子的旋转驱动器的结构设计方案,使对称波电信号作用在压电双晶片振子上,产生正反两方向大小不同的周期性惯性冲击力,驱动机构实现旋转位移。建立了压电旋转驱动器的动力学模型,并分析了非对称夹持旋转驱动器实现大小不同的惯性冲击力原理以及压电旋转驱动器的运动过程。组成了压电旋转驱动器的测试系统,在不同电压幅值、频率的方波激励下,对压电旋转驱动器的平均步长进行了测试。结果表明:非对称夹持式压电旋转驱动器能实现较稳定的单向转动,最大行程360°,最大承载能力超过300g,步长分辨率5µrad,最大转动速度4000µrad/s;驱动器样机在20V、2Hz的方波激励下,平均运动步长12µrad,转动速度24µrad/s。  相似文献   

15.
Coaxial probes for scanning near-field microscopy   总被引:1,自引:0,他引:1  
This paper deals with the development of coaxial aperture tips integrated in a cantilever probe for combined scanning near-field infrared microscopy and scanning force microscopy. A fabrication process is introduced that allows the batch fabrication of hollow metal aperture tips integrated on a silicon cantilever. To achieve the coaxial tip arrangement a metal rod is deposited inside the hollow tip using the focused ion beam technique. Theoretical calculations with a finite integration code were performed to study the transmission characteristics of coaxial tips in comparison with conventional aperture probes. In addition, the influence of the geometrical design parameters of the coaxial probe on its optical behaviour is investigated.  相似文献   

16.
The authors fabricated a probe tip with various sizes and examined the size dependency of the probe tip on the distribution of retraction forces between actin and anti-actin. Probe tips of various sizes were fabricated by two-photon polymerization methods on a micro cantilever of an atomic force microscope (AFM). The authors succeeded in fabricating a spherical tip having a smooth surface and the tip size varied between φ 0.8 and 5.5 μm. Anti-actin was immobilized on the fabricated probe tips and force curves were measured against an actin-immobilized mica substrate by AFM to analyze the retraction forces. The histograms of retraction forces showed that the single-molecular retraction force between actin and anti-actin was ca. 350–400 pN. It was observed that the average retraction forces for each tip size correlated with the square of the tip radius.  相似文献   

17.
分析了现有的AFM力传感器的工艺特点及问题。在此基础上研究用KOH溶液两步法P+自停止腐蚀制作厚度精确可控的单晶硅悬臂梁;以SiO2为掩模,SF6刻蚀硅,用RIE与各向同性湿法化学腐蚀相结合使悬臂梁探针一次成形和用湿法腐蚀锐化探针,针尖半径约50nm.制定了适于批量生产的AFM力传感器加工工艺。  相似文献   

18.
This paper deals with the development of coaxial aperture tips integrated in a cantilever probe for combined scanning near-field infrared microscopy and scanning force microscopy. A fabrication process is introduced that allows the batch fabrication of hollow metal aperture tips integrated on a silicon cantilever. To achieve the coaxial tip arrangement a metal rod is deposited inside the hollow tip using the focused ion beam technique. Theoretical calculations with a finite integration code were performed to study the transmission characteristics of coaxial tips in comparison with conventional aperture probes. In addition, the influence of the geometrical design parameters of the coaxial probe on its optical behaviour is investigated.  相似文献   

19.
Microelectromechanical system (MEMS) test sockets with attached tips were developed for a ball-grid-array integrated circuit (BGA IC) package, using MEMS fabrication technology in conjunction with Ni-Co electroplating and XeF2 isotropic silicon etching. The electroplating process was used to create metal tips and thick metal cantilevers, which increased the contact reliability and conductivity. XeF2 isotropic silicon etching was used to release the cantilever array, which reduced the process cost and increased the mechanical stability. A finite element analysis (FEA) simulation was conducted to verify the force-deflection relationships of five types of cantilevers with attached tips. With an input deflection of 40 μm, the measured forces ranged from 12.55 to 26.14 mN, and matched the FEA results. The path resistance between a tip and the appropriate electrode pad was less than 3.49 Ω for all cantilevers when the tips were connected to the corresponding positions with more than 5 mN of contact force. The cantilever design with a length of 430 um and a tip height of 60 um (L430D60) showed the best performance in terms of the force-deflection relationship, a well as resistance. Therefore, the fabricated MEMS test sockets with tips are potentially applicable to actual BGA IC package tests.  相似文献   

20.
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号