首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large strain finite element method is employed to investigate the effect of straining mode on void growth. Axisymmetric cell model embedded with spherical void is controlled by constant triaxiality loading, while plane-stress model containing a circular void is loaded by constant ratio of straining. Elastic-plastic material is used for the matrix in both cases. It is concluded that, besides the known effect of triaxiality, the straining mode which intensifies the plastic concentration around the void is also a void growth stimulator. Experimental results are cited to justify the computation results. This paper is jointly supported by the National Natural Science Foundation of China (19872064), the Chinese Academy of Sciences (KJ951-1-201) and the Laboratory for Nonlinear mechanics of Continuous Media of the Institute of Mechanics  相似文献   

2.
本文对含不同形状孔洞的幂硬化材料的圆柱体胞模型,运用控制宏观应力三维工的方法进行了有限元分析。计算结果表明:1.孔洞初始形状,应力三维度对孔洞的长大有重要影响;2.Guson模型对孔洞长大规律的描述是不准确的,不准确度与孔洞初始形状,应力三维度有关,修正后的Gurson模型与有限元结果吻合较好;3.在低应力三维度区,孔洞以及形状改变为主,在高应力三维度区,孔洞以扩张为主;  相似文献   

3.
考虑三轴约束时孔洞的聚合机理及有效能量准则   总被引:10,自引:0,他引:10  
李振环  匡震邦 《力学学报》2000,32(4):428-438
通过体胞分析方法,对不同状孔洞在从光滑试样到裂纹试样的三轴应力场中的聚合机理进行了较精解的有限元分析,计算结果表明:(1)孔洞的相互靠近和横向扩展是导致相邻孔洞发生内颈缩聚合的两种基本机制,在应力三维度Rσ等于1.25附近,这两种机制发生较明显的变化。(2)单纯以孔洞体积分数fC概念为基础的材料破坏参数一般敏感于应力三维度,不能很好地预报不同三轴应力场中材料的破坏,在此基础上,提出了描述孔洞聚合的  相似文献   

4.
三轴应力场中不同形状孔洞的长大及其新模型   总被引:2,自引:0,他引:2  
对不同形状孔洞在从光滑试样到裂纹试样这样广泛三轴应力场中的长大规律,本文通过控制体胞宏观应力三维度的方法进行了精确的有限元分析,计算结果表明:(1)孔洞的体积改变和形状变化是孔洞演化的两种基本机制,在不同的三轴应力场中,这两种机制的作用不同;(2)现有模型对孔洞长大规律的描述是不准确的,由它们得到的临界孔洞扩张比参数HGC与临界孔洞体积分数fc不具备一一对应关系,因此不以很好地反映也洞的实际扩张。在此基础上,提出了一个描述孔洞长大的新模型,与四种常用的现有模型相比,该模型不仅能更好地描述不同三轴应力场中孔洞的长大,而且能反映不同应力三维度水平下材料破坏模式的变化。  相似文献   

5.
The GTN model proposed by Gurson, Tvergaard and Needleman has been widely applied to predict ductile fracture. However, the evaluation of the GTN model under high stress triaxiality has only been reported in a few studies. In this paper, a series of tensile tests on round notched specimens were performed to evaluate the applicability of the GTN model parameters under high stress triaxiality. The evaluation was carried out by comparing the predicted load-displacement curves with experimental results. It was observed the GTN model parameters only depend on the material except the critical void volume fraction. The influence of stress triaxiality on the critical void volume fraction was discussed. A further discussion about the construction of a new void coalescence criterion for the GTN model was also presented in this paper.  相似文献   

6.
Ductile fracture in axisymmetric and plane strain notched tensile specimens is analyzed numerically, based on a set of elastic-plastic constitutive relations that account for the nucleation and growth of microvoids. Final material failure by void coalescence is incorporated into the constitutive model via the dependence of the yield function on the void volume fraction. In the analyses the material has no voids initially; but as the voids nucleate and grow, the resultant dilatancy and pressure sensitivity of the macroscopic plastic flow influence the solution significantly. Considering both a blunt notch geometry and a sharp notch geometry in the computations permits a study of the relative roles of high strain and high triaxiality on failure. Comparison is made with published experimental results for notched tensile specimens of high-strength steels. All axisymmetric specimens analyzed fail at the center of the notched section, whereas failure initiation at the surface is found in plane strain specimens with sharp notches, in agreement with the experiments. The results for different specimens are used to investigate the circumstances under which fracture initiation can be represented by a single failure locus in a plot of stress triaxiality vs effective plastic strain.  相似文献   

7.
Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume element (RVE) which includes matrix and void is employed and a Rayleigh-Ritz procedure is developed to study the deformation-rates of a spherical void and a penny-shaped crack. Based on an approximate interpolation scheme, an analytical model for void closure in nonlinear plastic materials is established. It is found that the local plastic flows of the matrix material are the main mechanism of void deformation. It is also shown that the relative void volume during the deformation depends on the Norton exponent, on the far-field stress triaxiality, as well as on the far-field effective strain. The predictions of void closure using the present model are compared with the corresponding results in the literature, showing good agreement. The model for void closure provides a novel way for process design and optimization in terms of elimination of voids in billets because the model for void closure can easily be applied in the CAE analysis.  相似文献   

8.
In the present paper, axisymmetric cell models containing one or two voids and athree-dimensional cell model containing two voids have been used to investigate void size andspacing effect on the ductile fracture in materials with high initial void volume fraction. They areperformed for round smooth and round notched specimens under uniaxial tension. The examplematerial used for comparison is a nodular cast iron material GGG-40 with initial void volumefraction of 7.7%. The parameters considered in this paper are void size and shape foraxisymmetric cell models containing a single void, and void distribution pattern foraxisymmetric and 3D cell models containing two voids of different sizes. The results obtainedfrom these cell models by using FEM calculations are compared with the Gurson model, theGurson–Tvergaard–Needleman model, the Rice–Tracey model and the modified Rice–Traceymodel. It can be stated that the influence of void size and void spacing on the growth in volumeof voids is very large, and it is dependent on the distribution of voids. Using non-uniform voiddistribution, the results of axisymmetric cell models can explain how a void can grow in anunstable state under very low stress triaxiality at very small strain as observed in experiments.Calculations using cell models containing two voids give very different results about the stableand unstable growth of voids which are strongly dependent on the configuration of cell model.  相似文献   

9.
Void growth and coalescence in single crystals are investigated using crystal plasticity based 3D finite element calculations. A unit cell involving a single spherical void and fully periodic boundary conditions is deformed under constant macroscopic stress triaxiality. Simulations are performed for different values of the stress triaxiality, for different crystal orientations, and for low and high work-hardening capacity. Under low stress triaxiality, the void shape evolution, void growth, and strain at the onset of coalescence are strongly dependent on the crystal orientation, while under high stress triaxiality, only the void growth rate is affected by the crystal orientation. These effects lead to significant variations in the ductility defined as the strain at the onset of coalescence. An attempt is made to predict the onset of coalescence using two different versions of the Thomason void coalescence criterion, initially developed in the framework of isotropic perfect plasticity. The first version is based on a mean effective yield stress of the matrix and involves a fitting parameter to properly take into account material strain hardening. The second version of the Thomason criterion is based on a local value of the effective yield stress in the ligament between the voids, with no fitting parameter. The first version is accurate to within 20% relative error for most cases, and often more accurate. The second version provides the same level of accuracy except for one crystal orientation. Such a predictive coalescence criterion constitutes an important ingredient towards the development of a full constitutive model for porous single crystals.  相似文献   

10.
The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite elasticity. Coupling effects of void shape and void size on the growth of the void are paid special attention to. The deformation function of the plate with an isolated elliptic void is given, which is expressed by two parameters to solve the differential equation. The solution is approximately obtained from the minimum potential energy principle. Deformation curves for the void with a wide range of void aspect ratios and the stress distributions on the surface of the void have been obtained by numerical computation. The growth behavior of the void and the characteristics of stress distributions on the surface of the void are captured. The combined effects of void size and void shape on the growth of the void in the thin plate are discussed. The maximum stresses for the void with different sizes and different void aspect ratios are compared.  相似文献   

11.
用碳化硅强化金属基复合材料制作的不同切口的拉伸试样进行了拉伸试验并使用三维电子扫描显微镜对拉伸延性断面进行了微小空穴的三维形状测试,分析了在不同应力三维度下空穴聚合时空穴几何形状的变化,为准确模拟金属基复合材料在多向外载荷下的损伤过程,判断延性损伤机理提供了科学依据。  相似文献   

12.
The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void shape effect and the Fleck-Hutchinson phenomenological strain gradient plasticity theory is employed to capture the size effects. It is found that the combined effects of void size and void shape are mainly controlled by the remote stress triaxiality. Based on this, a new size-dependent void growth model similar to the Rice-Tracey model is proposed and an important conclusion about the size-dependent void growth is drawn: the growth rate of the void with radius smaller than a critical radius rc may be ignored. It is interesting that rc is a material constant independent of the initial void shape and the remote stress triaxiality.The project supported by the National Natural Science Foundation of China (A10102006) and the New Century Excellent Talents in Universities of China. The English text was polished by Keren Wang.  相似文献   

13.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

14.
含与不含晶界空穴的双晶体蠕变行为研究   总被引:1,自引:1,他引:0  
基于晶体滑移理论,建立了各向异性镍基合金双晶体的蠕变本构模型和蠕变寿命预测模型,通过MARC用户子程序CRPLAW将上述本构模型进行了有限元实现,并对双晶体蠕变行为进行了计算分析,考虑了:(1)晶体取向的影响;(2)垂直、倾斜和平行于外载方向的三种位向晶界情况;(3)晶界处引进空间空穴的影响。结果表明,双晶体上特别是微空穴和晶界附近区域的蠕变应力应变呈现不同的变化规律,对此晶粒晶体取向和晶界位向有较大的影响;微空穴的存在削弱了双晶体的承载能力,显著地影响了双晶体蠕变持久寿命;相同条件下,垂直晶界对双晶体模型的蠕变损伤影响最为强烈,倾斜晶界次之,平行晶界最小;微空穴的生长与晶界位向和晶体取向有强烈的依赖关系,其中垂直晶界更有利于晶体滑移和微空穴生长。  相似文献   

15.
A micromechanics model based on the theoretical framework of plastic localization into a band introduced by Rice is developed. The model consists of a planar band with a square array of equally sized cells, with a spherical void located in the centre of each cell. The periodic arrangement of the cells allows the study of a single unit cell for which fully periodic boundary conditions are applied. The micromechanics model is applied to analyze failure by ductile rupture in experiments on double notched tube specimens subjected to combined tension and torsion carried out by the present authors. The stress state is characterized in terms of the stress triaxiality and the Lode parameter. Two rupture mechanisms can be identified, void coalescence by internal necking at high triaxiality and void coalescence by internal shearing at low triaxiality. For the internal necking mechanism, failure is assumed to occur when the deformation localizes into a planar band and is closely associated with extensive void growth until impingement of voids. For the internal shearing mechanism, a simple criterion based on the attainment of a critical value of shear deformation is utilized. The two failure criteria capture the transition between the two rupture mechanisms successfully and are in good agreement with the experimental result.  相似文献   

16.
Micromechanics of coalescence in ductile fracture   总被引:2,自引:0,他引:2  
Significant progress has been recently made in modelling the onset of void coalescence by internal necking in ductile materials. The aim of this paper is to develop a micro-mechanical framework for the whole coalescence regime, suitable for finite-element implementation. The model is defined by a set of constitutive equations including a closed form of the yield surface along with appropriate evolution laws for void shape and ligament size. Normality is still obeyed during coalescence. The derivation of the evolution laws is carefully guided by coalescence phenomenology inferred from micromechanical unit-cell calculations. The major implication of the model is that the stress carrying capacity of the elementary volume vanishes as a natural outcome of ligament size reduction. Moreover, the drop in the macroscopic stress accompanying coalescence can be quantified for many initial microstructures provided that the microstructure state is known at incipient coalescence. The second part of the paper addresses a more practical issue, that is the prediction of the acceleration rate δ in the Tvergaard-Needleman phenomenological approach to coalescence. For that purpose, a Gurson-like model including void shape effects is used. Results are presented and discussed in the limiting case of a non-hardening material for different initial microstructures and various stress states. Predicted values of δ are extremely sensitive to stress triaxiality and initial spacing ratio. The effect of initial porosity is significant at low triaxiality whereas the effect of initial void shape is emphasized at high triaxiality.  相似文献   

17.
幂强化材料和超弹性材料组合球体中孔穴的动态生成   总被引:1,自引:0,他引:1  
在简单加载条件下,研究幂强化材料和超弹性材料组合球体中的动态孔穴生成和增长问题,首先在有限变形动力学的框架下建立了相应的非线性数学模型,得到了应力的表达式,利用变量变换的方法求得了外加载荷和孔穴半径之间的一个精确的微分关系式,证明了当突加载荷超过其临界值时,球体内部有孔穴的突然生成,并随时间呈现非线性的周期振动.通过数值计算,分析了材料参数和球体的半径比对孔穴生成和增长的影响,并与相应的静态结果进行了比较.结果发现,惯性力的影响降低孔穴生成的临界载荷,而且材料的塑性对孔穴生成和增长有明显的影响.  相似文献   

18.
Recent experimental evidence points to limitations in characterizing the critical strain in ductile fracture solely on the basis of stress triaxiality. A second measure of stress state, such as the Lode parameter, is required to discriminate between axisymmetric and shear-dominated stress states. This is brought into the sharpest relief by the fact that many structural metals have a fracture strain in shear, at zero stress triaxiality, that can be well below fracture strains under axisymmetric stressing at significantly higher triaxiality. Moreover, recent theoretical studies of void growth reveal that triaxiality alone is insufficient to characterize important growth and coalescence features. As currently formulated, the Gurson Model of metal plasticity predicts no damage change with strain under zero mean stress, except when voids are nucleated. Consequently, the model excludes shear softening due to void distortion and inter-void linking. As it stands, the model effectively excludes the possibility of shear localization and fracture under conditions of low triaxiality if void nucleation is not invoked. In this paper, an extension of the Gurson model is proposed that incorporates damage growth under low triaxiality straining for shear-dominated states. The extension retains the isotropy of the original Gurson Model by making use of the third invariant of stress to distinguish shear dominated states. The importance of the extension is illustrated by a study of shear localization over the complete range of applied stress states, clarifying recently reported experimental trends. The extension opens the possibility for computational fracture approaches based on the Gurson Model to be extended to shear-dominated failures such as projectile penetration and shear-off phenomena under impulsive loadings.  相似文献   

19.
20.
Finite element (FE) calculations of a cylindrical cell containing a spherical hole have been performed under large strain conditions for varying triaxiality with three different constitutive models for the matrix material, i.e. rate independent plastic material with isotropic hardening, visco-plastic material under both isothermal and adiabatic conditions, and porous plastic material with a second population of voids nucleating strain controlled. The “mesoscopic” stress-strain and void growth responses of the cell are compared with predictions of the modified Gurson model in order to study the effects of varying triaxiality and strain rate on the critical void volume fraction. The interaction of two different sizes of voids was modelled by changing the strain level for nucleation and the stress triaxiality. The study confirms that the void volume fraction at void coalescence does not depend significantly on the triaxiality if the initial volume fraction of the primary voids is small and if there are no secondary voids. The strain rate does not affect fc either. The results also indicate that a single internal variable, f, is not sufficient to characterize the fracture processes in materials containing two different size-scales of void nucleating particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号