首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper studies the problem of fault estimation and accommodation for a class of nonlinear time‐varying delay systems using adaptive fault diagnosis observer (AFDO). A novel fast adaptive fault estimation algorithm that does not need the derivative of the output vector is proposed to enhance the performance of fault estimation. Meanwhile, a delay‐dependent criteria is obtained based on free weighting matrix method with the purpose of reducing the conservatism of the AFDO design. On the basis of fault estimation, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of matrix inequality, we derive sufficient conditions for the existence of the adaptive observer and fault‐tolerant controller. Simulation results are presented to illustrate the efficiency of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
This paper deals with the fault estimation problem for a class of linear time‐delay systems with intermittent fault and measurement noise. Different from existing observer‐based fault estimation schemes, in the proposed design, an iterative learning observer is constructed by using the integrated errors composed of state predictive error and tracking error in the previous iteration. First of all, Lyapunov function including the information of time delay is proposed to guarantee the convergence of system output. Subsequently, a novel fault estimation law based on iterative learning scheme is presented to estimate the size and shape of various fault signals. Upon system output convergence analysis, we proposed an optimal function to select appropriate learning gain matrixes such that tracking error converges to zero, simultaneously to ensure the robustness of the proposed iterative learning observer which is influenced by measurement noise. Note that, an improved sufficient condition for the existence of such an estimator is established in terms of the linear matrix inequality (LMI) by the Schur complements and Young relation. In addition, the results are both suit for the systems with time‐varying delay and the systems with constant delay. Finally, three numerical examples are given to illustrate the effectiveness of the proposed methods and two comparability examples are provided to prove the superiority of the algorithm.  相似文献   

3.
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.  相似文献   

4.
非均匀采样数据系统时变故障估计与调节最优集成设计   总被引:1,自引:0,他引:1  
针对一类发生连续时变故障的非均匀采样数据系统,建立了一套主动容错控制最优设计方案. 首先,为了实现基于非均匀离散采样输出对连续故障的估计,同时鉴于现有自适应故障诊断方法无法直接推广于非均匀采样数据系统,提出一种连续时间增广观测器最优设计方法,既能保证故障估计误差快速收敛同时又对外界干扰鲁棒;并且提出一个迭代算法对故障估计延迟与系统鲁棒性进行权衡;进一步地,基于所获得的故障信息,并考虑估计误差和时变故障内采样特性对容错控制带来的不利因素,设计基于状态反馈的非均匀采样容错控制器来快速恢复故障系统性能;最后,通过对四容水箱基准实例的仿真来验证所提方法的有效性.  相似文献   

5.
针对一类含有外部干扰的线性采样数据系统, 本文研究了执行器故障估计问题. 首先, 文章设计了一种用于估计系统执行器故障的鲁棒故障估计观测器, 在连续采样时间间隔内, 观测器增益矩阵指数变化. 之后, 通过联合增广状态估计误差与故障误差, 并利用Lyapunov-Krasovskii泛函和线性矩阵不等式技术, 给出了保证误差系统全局渐近稳定的充分条件. 同时, 建立的线性矩阵不等式条件涉及调谐参数和最大采样间隔, 可以较好改善状态和故障估计性能. 最后, 通过对某型民航飞机模型实例进行仿真, 验证了本文所提方法具有更好的跟踪效果  相似文献   

6.
This paper focuses on the fault estimation observer design problem in the finite‐frequency domain for a class of Lipschitz nonlinear multiagent systems subject to system components or actuator fault. First, the relative output estimation error is defined based on the directed communication topology of multiagent systems, and an observer error system is obtained by connecting adaptive fault estimation observer and the state equation of the original system. Then, sufficient conditions for the existence of the fault estimation observer are obtained by using a generalized Kalman‐Yakubovich‐Popov lemma and properties of the matrix trace, which guarantee that the observer error system satisfies robustness performance in the finite‐frequency domain. Meanwhile, the pole assignment method is used to configure the poles of the observer error system in a certain area. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

7.
对满足指数1和线性增长条件的非线性微分-代数系统,本文证明其采样输出反馈镇 定控制问题可解.首先,给出一个线性显式非初始化状态观测器设计;然后,构造出线性的采样输出 反馈控制器,使得整个闭环系统渐近稳定.仿真结果表明了所提控制方法的有效性.  相似文献   

8.
In this paper, a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network. The sensor fault and the system input uncertainty are assumed to be unknown but bounded. The radial basis function (RBF) neural network is used to approximate the sensor fault. Based on the output of the RBF neural network, the sliding mode observer is presented. Using the Lyapunov method, a criterion for stability is given in terms of matrix inequality. Finally, an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.  相似文献   

9.
This paper investigates the problem of global output feedback stabilization for a class of feedforward nonlinear systems via linear sampled-data control. To solve the problem, we first construct a linear sampled-data observer and controller. Then, a scaling gain is introduced into the proposed observer and controller. Finally, we use the sampled-data output feedback domination approach to find the explicit formula for choosing the scaling gain and the sampling period which renders the closed-loop system globally asymptotically stable. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

10.
This paper focuses on the problem of adaptive output feedback fault tolerant control for a nonlinear hydro‐turbine governing system. A dynamic mathematical model of the system is established, which aims to investigate the dynamic performance of the model under servomotor delay and actuator faults. Then, a fault estimation adaptive observer is proposed to achieve online real‐time diagnosis of system faults. Based on the online fault estimation information, an observer‐based adaptive output feedback fault tolerant controller is designed. Furthermore, under reasonable assumptions, the results demonstrate that the closed‐loop control system can achieve global asymptotic stability by Lyapunov function. Finally, the numerical simulation results are presented to indicate the satisfaction control effectiveness of the proposed scheme.  相似文献   

11.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

12.
Robust fault diagnosis for a class of nonlinear systems   总被引:1,自引:0,他引:1  
Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.  相似文献   

13.
Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.  相似文献   

14.
邱爱兵  姜斌 《控制理论与应用》2010,27(12):1757-1765
研究一般非均匀采样数据系统鲁棒传感器故障检测设计问题.首先,基于输出时滞方法将非均匀采样数据系统转换成具有时变时滞输出的连续系统;然后,选择故障检测滤波器作为残差产生器,并将故障检测设计问题描述成一个多目标优化问题,即连续时间过程噪声和离散时间测量噪声对残差信号的H∞范数小于一个给定值,同时传感器故障对残差信号的l2增益大于一个给定值,基于输入输出方法以矩阵不等式的形式给出该多目标优化问题有解的充分条件;进一步的,提出一个迭代算法来权衡噪声鲁棒性与故障灵敏度,并将矩阵不等式转换成可解的线性矩阵不等式.最后,对某型飞控系统的仿真实验验证了所提方法的有效性.  相似文献   

15.
The fault estimation for a class of nonlinear systems with Lipschitzian nonlinearities and faults is studied in this article. An integrated estimation observer that covers the robust estimation observer (REO) and adaptive estimation observer (AEO) is proposed to improve the accuracy of fault estimation. Compared with the traditional AEO, the designed observer does not involve the output derivatives and can be more suitable for practical applications. Furthermore, based on the designed observer, the coupling term emerging in the obtained error dynamics can be eliminated reasonably and less conservative stability conditions for the error dynamics can be obtained, whereas the case is hard to be achieved based on the existing intermediate estimator approach in the literature. Compared with the traditional REO and AEO, the fault can be estimated with a good accuracy by using the proposed integrated estimation observer. Numerical examples test the effectiveness and advantages of the proposed method.  相似文献   

16.
This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.  相似文献   

17.
18.
Design of a bilinear fault detection observer for singular bilinear systems   总被引:2,自引:0,他引:2  
A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a bilinear fault detection observer is proposed for the decomposed system via an algebraic Riccati equation, and the domain of attraction of the state estimation error is estimated. A design procedure is presented to determine the fault detection threshold. A model of flexible joint robot is used to demonstrate the effectiveness of the proposed method.  相似文献   

19.
利用输出差分及滑模方法研究一类非线性系统的自适应时延状态观测器设计问题. 首先将系统输出的微分及高阶微分用输出和其延迟测量值的差商来表示, 然后在此基础上构造了一种时延状态观测器, 估计误差的影响可由滑模项来消除. 在系统满足线性参数化的条件下给出了一种自适应时延状态观测器设计. 最后给出仿真研究说明设计方法的有效性.  相似文献   

20.
故障检测与诊断(FDD)技术可以有效地提高系统的安全性和可靠性,因此受到越来越多的关注.目前,关于离散系统的状态和故障估计问题的研究还不够充分.本文针对具有积分测量和时延的线性变参数(LPV)系统,提出了一种同时估计执行器/传感器故障和状态的方法.首先,系统当前状态、系统延迟状态和传感器故障构造一个扩维状态,得到广义离散LPV系统.其次,给出了该观测器存在的充分条件并证明观测器是H∞稳定的.然后,将系统状态、执行器和传感器故障的同时估计转化为矩阵不等式的求解问题,给出了观测器待设计矩阵的计算过程.最后,通过仿真验证了该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号