首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
以内蒙古荒漠地区胡杨林为研究对象,应用混合像元分解方法从TM多光谱数据中提取了胡杨林植被覆盖度,并以高分辨率Quickbird影像分割结果作为真值进行精度评价,与传统的基于植被指数提取植被覆盖度的方法进行了对比。结果表明:基于几何顶点端元选取的混合像元分解方法可以有效提取胡杨植被覆盖度( R2=0.893,RMSE=0.12),优于植被指数回归方法提取精度(R2=0.574)。研究结果有助于开展荒漠地区较大范围的胡杨林动态监测和保护。  相似文献   

2.
高光谱影像混合像元分解技术将遥感分类问题深入到了亚像元级别,端元提取是混合像元分解中的重要步骤。本文选择了基于体积的N-FINDER算法、基于投影和变换的VCA、OSP算法、基于最优化的MVSA算法,结合SPP算法对数据进行预处理,利用模拟数据与真实数据分别进行实验,对比分析实验结果,总结端元提取算法的优点与缺陷以及各自适应的条件。  相似文献   

3.
基于混合像元分解提取小麦种植面积的技术与方法研究   总被引:4,自引:0,他引:4  
以菏泽市曹县为例,运用线性混合模型,对MODIS遥感数据的混合像元分解技术与方法进行了初步研究。通过MNF变换、散点图以及引入PPI纯净像元指数确定端元组分,并采用最小包含法求取端元组分反射率,而后将4类端元光谱值代入线性模型,用带有约束的最小二乘法求解,得出每种地物类型的百分比丰度以及RMS误差图像,RMS均值小于0.0096,并与TM图像进行对比分析,利用混合像元分解方法可较高精度的提取小麦面积信息。  相似文献   

4.
陈东来 《安徽农业科学》2021,49(22):107-109
基于Landsat 8 OLI遥感影像数据,以巢湖流域为研究区,通过线性混合像元分解法从混合像元光谱中消除植被端影响,重建土壤光谱,构建土壤有机质遥感估算模型,并与直接基于影像光谱构建的土壤有机质估算模型进行比较.结果表明,通过线性混合像元分解法构建的估算模型建模集的决定系数(R2)为0.48,均方根误差(RMSE)为5.42,验证集的R2=0.46、RMSE=5.85;直接基于影像光谱构建的土壤有机质估算模型建模集的R2=0.36、RMSE=6.93,验证集的R2=0.37、RMSE=7.12.运用线性混合像元分解法构建的有机质估算模型可有效抑制地表植被干扰,提高土壤有机质遥感估算精度.  相似文献   

5.
为了充分利用中等分辨率遥感影像的空间、纹理和光谱信息,解决影像中存在的大量混合像元问题,提高多端元光谱混合分析方法的效率,本文提出了基于面向对象的多端元光谱混合分析方法。首先利用面向对象的分析方法对研究区遥感影像进行分类,得到分类结果图;然后对分类结果图中包含多种土地覆盖类型的对象进行多端元光谱混合分析,获得各土地覆盖类别的丰度图及分解残差图;最后对基于面向对象的多端元光谱混合分析结果与多端元光谱混合分析结果进行对比分析。结果表明,基于面向对象的多端元光谱混合分析方法能够得到比较连续且和实际地物分布较为吻合的分析结果,其分解精度和效率优于多端元光谱混合分析方法。该方法可更有效地提取地表覆盖信息,为研究区域性生态环境变化、模拟分析提供了有效的信息提取方法。  相似文献   

6.
混合像元的存在是影响地面物种分类精度的主要因素之一.本文把遗传算法与神经网络算法各自的优点结合起来,组成一种新的分解模型.对遥感图像数据进行分析,结果表明:使用该模型分解混合像元能得到很好的结果.  相似文献   

7.
混合像元及混合像元分析   总被引:6,自引:0,他引:6  
由于中低空间分辨率的遥感数据在一个像元中记录了两种以上地类的不同光谱 ,从而获得了两个以上地类的光谱之和以及混合像元 ,当地类破碎时混合像元越多 ,而且在两类以上地类的交界处混合像元最多 .该文模拟不同空间分辨率的遥感图像中混合像元造成的误分类情况 ,同时应用线性模型对混合像元进行了分解提纯 ,用以提高分辨率精度  相似文献   

8.
南昌地区不透水面遥感估算研究   总被引:2,自引:0,他引:2  
基于亚像元思想,采用线性光谱混合模型对混合像元进行分解,结合传统与手动方法选取端元,使用Landsat 8 OLI数据对研究区不透水面覆盖度(Impervious Surface Coverage,ISC)进行提取,并对初步提取的不透水面采用NDVI阈值法进行优化处理。对于模型的分解精度,RMS平均值为0.008 812,达到精度要求。提取结果经精度验证,提取的不透水面盖度的均方根误差为0.139 8,平均绝对误差为0.080 9,具有较高的精度。最后,对南昌部分地区进行不透水面盖度统计,并对其进行空间分布分析。研究结果表明:使用线性光谱混合模型并结合传统与手动选取端元,能够较好的提取南昌地区不透水面盖度信息,可以解决仅仅基于像元的不透水面提取精度不高的问题;南昌地区不透水面主要集中在研究区的中部地区,四周不透水面盖度较低,平均不透水面盖度最高的地区为青云谱区,平均ISC达到59%。  相似文献   

9.
植被覆盖度作为反映湿地植物生长状况的重要生态学参数,在评估和检测湿地生态环境方面起着关键的作用.以华北内陆典型的淡水湿地——北京市野鸭湖湿地自然保护区为研究对象,中等分辨率的Landsat TM影像为数据源,基于线性光谱混合模型(LSMM)对研究区的植被覆盖度进行了估算.针对湿地植被类型丰富、土地利用类型多样化的特点,利用归一化植被指数(NDVI)在反映植物生长状况、覆盖程度以及区分地表覆盖类型方面的优势,通过对原始Landsat TM影像增加NDVI数据维对影像进行维度扩展,克服了传统研究中通常从Landsat TM影像上提取3-4种端元的局限,经最小噪声分离变换(MNF变换)、纯像元指数(PPI)计算以及人机交互端元选取等一系列运算,构建以陆生植物、水生植物、高反射率地物、低反射率地物、裸露土壤为组分的五端元模型来反映研究区的地物组成;同时,以原始Landsat TM影像为基础,构建植物、高反射率地物、低反射率地物、裸露土壤为组分的四端元模型.针对两种端元模型,采用全约束下的LSMM算法进行混合像元分解以获取研究区的植被覆盖度,其次辅以研究区的纯水体信息对其进行优化.精度检验采用相同时期的高分辨率WorldView-2多光谱影像来进行.研究表明:虽然四端元模型与五端元模型对植被覆盖度的估算结果在空间上具有基本一致的分布趋势,但是前者的估算结果在数值上要普遍低于后者,在研究区的水体及其附近,四端元模型难以体现水生植物的植被覆盖信息;另外,五端元模型的估算结果与检验数据的相关系数R达到0.9023,均方根误差(RMSE)为0.0939,明显优于四端元模型的R=0.8671和RMSE=0.1711.这反映了通过对影像进行维度扩展的方法来改进端元提取的数量是可行的,而由此构建的五端元模型可以更充分的反映研究区地物之间的光谱差异,从而获得更好的估算精度.  相似文献   

10.
以河南省息县水稻种植面积提取为例,选取线性光谱混合模型对环境小卫星数据进行分类,并计算出水稻种植面积,将其结果与高分辨率ALOS数据进行位置精度计算,得到平均精度达87.89%。同时,与决策树分类方法和神经元网络分类等方法进行对比,混合像元分解方法总量精度显著提高。表明针对环境小卫星的混合像元分解方法可以提高水稻种植面积的提取精度。  相似文献   

11.
基于IDL的混合光谱分解模型的实现   总被引:2,自引:0,他引:2  
通过对混合光谱分解模型的研究,实现了基于IDL的线形混合光谱分解模型的开发,开发过程中实现了遥感数据的读取、混合像元的分解,最终得到了植被组分丰度、水体组分丰度和裸沙组分丰度解算结果的栅格数据。通过程序改写文件格式,成功将该数据接入到地理信息系统中,提取裸沙组分的丰度图,得到裸沙占地百分比专题数据,该数据为荒漠化评价的重要指标之一。  相似文献   

12.
Spectral unmixing techniques can be used to quantify crop canopy cover within each pixel of an image and have the potential for mapping the variation in crop yield. This study applied linear spectral unmixing to airborne hyperspectral imagery to estimate the variation in grain sorghum yield. Airborne hyperspectral imagery and yield monitor data recorded from two sorghum fields were used for this study. Both unconstrained and constrained linear spectral unmixing models were applied to the hyperspectral imagery with sorghum plants and bare soil as two endmembers. A pair of plant and soil spectra derived from each image and another pair of ground-measured plant and soil spectra were used as endmember spectra to generate unconstrained and constrained soil and plant cover fractions. Yield was positively related to the plant fraction and negatively related to the soil fraction. The effects of variation in endmember spectra on estimates of cover fractions and their correlations with yield were also examined. The unconstrained plant fraction had essentially the same correlations (r) with yield among all pairs of endmember spectra examined, whereas the unconstrained soil fraction and constrained plant and soil fractions had r-values that were sensitive to the spectra used. For comparison, all 5151 possible narrow-band normalized difference vegetation indices (NDVIs) were calculated from the 102-band images and related to yield. Results showed that the best plant and soil fractions provided better correlations than 96.3 and 99.9% of all the NDVIs for fields 1 and 2, respectively. Since the unconstrained plant fraction could represent yield variation better than most narrow-band NDVIs, it can be used as a relative yield map especially when yield data are not available. These results indicate that spectral unmixing applied to hyperspectral imagery can be a useful tool for mapping the variation in crop yield.  相似文献   

13.
高光谱遥感光谱特征明显,单纯利用其光谱优势难以达到影像分类精度要求,特别是区分植被精细类别。为了进一步提高Hyperion高光谱影像分类精度,研究加入包含区域亮度变化及结构特征的纹理信息,试图提高分类精度。以杭州市余杭区百丈镇为试验区,首先提取研究区道路、建筑物、农田、毛竹Phyllostachysedulis林、马尾松Pinusmassoniana林和栎类Quercus等7种类型的端元光谱,然后对端元进行线性光谱分离,利用二阶概率矩阵对线性光谱分离出的8个波段提取纹理特征,最终结合线性分离后的端元光谱实现分类。结果表明:纹理信息融入后分类结果较单源信息光谱角制图和单源信息支持向量机方法有明显的改善,建筑物精度分别提高了34.13%和17.16%,农田提高了19.71%和9.24%,马尾松则改善了27.09%和5.42%,栎类精度提高了近3.00%和10.00%,且一定程度上避免了椒盐效应。采用光谱与纹理信息结合的方法对Hyperion高光谱影像分类是可行的。分类过程中端元的提取、纹理分析时特征向量的组合及纹理移动窗口大小的选择对分类结果起重要的作用。图6表1参19  相似文献   

14.
利用高光谱遥感技术代替传统方法检测重金属污染,具有效率高、费用低、检测范围广等优点.但是高光谱影像的空间分辨率较低,为了提高精度需要提取影像的端元.鉴于纯净像元指数(Pixel Purity Index,PPI)法耗时长的缺点,提出一种基于高斯分布的波谱曲线概率法用于高光谱影像端元提取,并结合重金属胁迫下植被波谱响应变化建立了高光谱遥感影像的植被重金属污染检测模型.经过试验研究及分析,发现波谱曲线概率法端元提取的效果和精度与PPI相近,但是时间消耗明显减少.因此,建立的植被重金属污染检测模型可以用于高光谱遥感图像,具有一定的价值.  相似文献   

15.
遥感图像分割是将以像元为基础的图像转化为以对象为基础的过程,因此,遥感图像分割是遥感图像高级分析的基础,对于中、低分辨率遥感图像来说,单个像元的面积较大,且混合像元现象严重,图像分割会产生较大的误差.高分辨率遥感图像单个像元的面积较小,分割后图像上单个对象内含若干像元,便于分析和提取信息.以高分辨率遥感图像QuickBird和IKONOS为研究对象,采用均值调整法对图像进行分割和精度检验.结果表明:采用均值调整法进行高分辨率遥感图像分割具有较好的效果,图像分割的速度和精度均较高.  相似文献   

16.
《农业科学学报》2019,18(11):2628-2643
Timely crop acreage and distribution information are the basic data which drive many agriculture related applications. For identifying crop types based on remote sensing, methods using only a single image type have significant limitations. Current research that integrates fine and coarser spatial resolution images, using techniques such as unmixing methods, regression models, and others, usually results in coarse resolution abundance without sufficient detail within pixels, and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images. Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels. Firstly, the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper (TM) image based on the Bayesian equation. Then, the winter wheat abundance (acreage fraction in a pixel) is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer (MODIS) time series data. Finally, winter wheat is identified by the proposed Abundance-Membership (AM) model based on the spatial relationship between the two types of pixels. Specifically, winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel. In other words, this method takes advantage of the relative size of membership in a local space, rather than the absolute size in the entire study area. This method is tested in the major agricultural area of Yiluo Basin, China, and the results show that acreage accuracy (Aa) is 93.01% and sampling accuracy (As) is 91.40%. Confusion matrix shows that overall accuracy (OA) is 91.4% and the kappa coefficient (Kappa) is 0.755. These values are significantly improved compared to the traditional Maximum Likelihood classification (MLC) and Random Forest classification (RFC) which rely on spectral features. The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information. Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel, the influence of differences of environmental conditions is greatly reduced. This advantage allows the proposed method to be effectively applied in other places.  相似文献   

17.
农业遥感图像增强有利于图像信息的提取与分析,萤火虫算法是近年来较为新颖的智能仿生算法,目前国内外关于其能否用于农业遥感图像增强的研究未见报道。文章首先利用非完全Beta函数建立农业遥感图像增强模型,结合人眼最小灰度分辨力函数进行图像细节增强,将每个输入区间的像素灰度值变换到适当的输出灰度级区间,最终生成对比度均衡的图像;然后通过萤火虫优化算法在其动态决策域半径进行伪差分操作更新;最后确定最佳参数的收敛条件,给出了算法流程。试验仿真结果表明,萤火虫算法的农业遥感图像检测在图像细节增强评价指标、相位一致性指标、通用质量评价指标等方面与直方图算法、Retinex算法、小波变换算法、模糊聚类算法等相比数据较优,能够用于农业遥感图像增强。  相似文献   

18.
总结了几种解决遥感图像分类中混合像元分解问题的方法,对各种方法的基本理论、应用条件和优缺点进行阐述,并对未来提高分类精度的前景进行展望,为遥感图像分类应用提供有价值的参考。  相似文献   

19.
海岸线是多年平均大潮高潮所形成的海水和陆地分界线的痕迹线,遥感技术可以提供大范围的海岸线动态监测。传统的硬分类方法提取海岸瞬时水边线是基于像元级的基础上进行的,其提取的精度较低;然而利用亚像元分解方法在复杂海岸地带上提取海岸瞬时水边线,是一项既新颖又具有挑战性的任务。因此,提出一种改进的亚像元海岸瞬时水边线提取方法(Improved Sub-pixel Coastal Waterline,ISPCW)可以获得较高的海岸瞬时水边线提取精度。首先,使用了一种水体-植被-不透水层-土壤模型(Water-VegetationImpervious-Soil,W-V-I-S)用于检测和确定海岸地带的W-V-I-S混合像元和纯净端元光谱;随后使用全约束最小二乘法(Fully Constrained Least Squares,FCLS)估计W-V-I-S混合像元中水体丰度值;最后使用空间吸引力模型获得海岸瞬时水边线。在上海实验区中,采用EO-1高光谱数据,将ISPCW方法和传统的多端元光谱混合分析(Multiple Endmember Spectral Mixture Analysis,MESMA)、混合调谐匹配滤波法(Mixture Tuned Matched Filtering,MTMF)、连续最大角凸锥(Sequential Maximum Angle Convex Cone,SMACC)、能量约束最小化(Constrained Energy Minimization,CEM)混合像元分解方法和归一化水体指数(Normalized Difference Water Index,NDWI)进行对比。实验结果表明,ISPCW方法用于提取海岸瞬时水边线获得较好的效果,其精度达到0.38个像元,与MESMA、MTMF、SMACC、CEM和NDWI方法相比,精度分别提高了22.4%、33.3%、42.4%、43.2%和51.3%,可以更有效的应用于高光谱海岸瞬时水边线提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号