首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)和归一化冠层阴影指数(normalized difference canopy shadow index,NDCSI)去除果树冠层多光谱影像中的阴影,提取非阴影区域果树冠层光谱信息;通过相关性分析方法,将基于原始光谱影像和基于NSVINDCSI去除阴影后提取的光谱数据与实测叶片氮素含量进行相关性分析,分别筛选氮素含量的敏感波段并构建光谱参量;采用偏最小二乘(partial least square,PLS)及支持向量机(support vector machine,SVM)方法构建果树冠层氮素含量反演模型并进行精度检验。【结果】绿光波段和红光波段为果树冠层氮素含量反演的敏感波段;阴影削弱了果树冠层的光谱信息,去除阴影前后,冠层多光谱各波段光谱差异较大,在红边波段及近红外波段尤为明显;基于2个阴影指数去除阴影后构建的氮素反演模型精度均有提升,最优模型为基于NDCSI去除阴影后构建的支持向量机氮素含量反演模型,该模型建模集R2RPD分别为0.774、1.828;验证集R2RPD分别为0.723、1.819。【结论】基于NDCSI可有效去除无人机多光谱果树冠层影像中的阴影,提高氮素含量反演精度,为果园氮素精准管理提供了有效参考。  相似文献   

2.
小麦籽粒蛋白质含量高光谱遥感预测模型比较   总被引:1,自引:0,他引:1  
【目的】利用高光谱遥感技术实现冬小麦籽粒蛋白质含量的精准预测,比较筛选小麦籽粒蛋白质含量预测模型,实现优质小麦栽培生产。【方法】设置不同品质类型小麦品种和施氮量处理,测定开花期叶片叶绿素含量(SPAD)、叶片干物质质量(LDW)、地上生物量(AGB)、叶片氮含量(LNC)、叶片氮积累量(LNA)、叶面积指数(LAI)、植株氮含量(PNC)、植株氮积累量(PNA)和氮营养指数(NNI)9个农学参数及小麦冠层光谱,通过一阶导数和偏最小二乘法,构建基于不同农学参数的小麦籽粒蛋白质含量高光谱预测模型。【结果】一阶导数处理可以提高光谱数据与农学参数的相关性。运用偏最小二乘法构建的高光谱农学参数估测模型中以SPAD的模型建模精度与验证精度相对较优,建模集决定系数R2与预测集标准均方根误差nRMSE分别为0.99和4.10%;NNI反演模型验证结果较好,相对预测偏差RPD为2.04;利用线性回归构建的农学参数-籽粒蛋白质预测模型中以LNC的建模精度与验证精度最佳,其建模集R2、预测集均方根误差RMSE和RPD分别为0.64、0.79和2.11。最终构建的“...  相似文献   

3.
基于叶片反射光谱估测水稻氮营养指数   总被引:1,自引:0,他引:1  
【目的】基于叶片反射光谱建立快速、无损监测水稻氮营养指数(nitrogen nutrition index,NNI)的估算模型。【方法】2018—2019年开展2个水稻品种(徽两优898和Y两优900)及5个氮肥梯度(施氮量为0、75、150、225和300 kg·hm-2,分别记为N0、N1、N2、N3、N4)的田间小区试验,测定关键生育期不同叶位叶片反射光谱和植株NNI,构建多种光谱指数的水稻NNI监测模型。【结果】单叶及叶位组合的敏感波段均分布在540 nm的绿光波长处,其与近红外波段构成的窄波段比值指数SR(R900,R540)可较好反演水稻NNI。但不同叶位叶片窄波段比值指数与水稻NNI的预测精度表现不同,顶3叶(L3)预测精度最好(R2=0.731,RMSE =0.130,RE=11.6%),顶2叶(L2)次之(R2=0.707,RMSE =0.136,RE =12.2%),顶1叶(L1)最差(R2=0.443,RMSE =0.187,RE =14.7%);顶2叶和顶3叶组合平均光谱(L23)的预测精度优于单叶水平和其他叶位组合(R2=0.740,RMSE =0.128,RE =11.5%)。再将窄波段比值指数SR(R900,R540)近红外与绿光区域分别重采样50 nm和10 nm,所构建的宽波段比值指数SR[AR(900±50),AR(540±10)]模型精度较SR(R900,R540)未明显降低,且在L23水平下2个模型的模型精度和预测精度基本一致(R2=0.740,RMSE =0.128,RE =11.5%)。水稻NNI小于1时与产量呈线性的正相关关系(P<0.05),大于1时产量趋于平稳。【结论】L2和L3叶片反射光谱为监测水稻NNI的敏感叶位,其中叶位组合L23可提高模型预测精度。基于叶片反射光谱构建的多种波段比值指数(SR(R900,R540)和SR[AR(900±50),AR(540±10)])可快速估测水稻NNI,从而为不同传感器对水稻氮营养指数估测监测研究提供了理论依据。  相似文献   

4.
【目的】及时、有效地预测籽粒蛋白质含量,能够为优质小麦品种的收购和加工提供科学合理的决策支持信息。本研究从籽粒蛋白质形成的氮素运转规律出发,研究冬小麦籽粒蛋白质遥感预测的可行性及在区域与年际间的扩展性,为高分辨率遥感卫星进行大面积蛋白质预测提供理论依据。【方法】利用2012-2013年4个冬小麦品种×4个氮肥梯度的试验数据和地面高光谱数据进行建模;基于小麦籽粒蛋白质形成的氮素运转机理,通过分析籽粒氮素累积量的两个主要来源及其之间的比例关系,重点抓住开花前的植株氮素累积量再运转这一主要来源,而灌浆期根际的氮素直接吸收则通过其与前者的比例关系来确定,通过相关农学参数模型的耦合,同时加入温度影响因子对籽粒氮素运转的影响,初步阐明了利用开花期小麦叶片氮含量可以预测籽粒蛋白质含量的应用机理;然后选择与叶片氮含量相关的植被指数,利用灰色关联分析-偏最小二乘算法(GRA-PLS)选择与叶片氮含量关联度较高的植被指数并进行小麦叶片氮含量的估算,通过与氮素运转模型的耦合构建了基于氮素运转原理的籽粒蛋白质含量遥感预测模型;最后利用2009-2010年的品种×播期×肥料试验和2012-2013年的其他品种氮肥处理试验进行验证。【结果】(1)通过GRA方法对叶片氮含量和植被指数间的关联度进行计算,选择关联度较大的前5个植被指数进行叶片氮含量建模,其植被指数分别为mND705、NDVIcanste、Readone、DCNI和NDCI;(2)通过PLS方法构建的叶片氮含量模型,建模结果的预测值与实测值的决定系数(R2)和均方根误差(RMSE)分别为0.859和0.257%,验证结果的R2和RMSE分别为0.726和0.063%,利用GRA-PLS方法估算叶片氮素含量具有较好的稳定性;(3)构建的蛋白质预测模型,建模结果和验证结果的预测值与实测值的R2和RMSE分别为0.713、1.30%和0.609、1.19%,预测模型具有较高的精度与可靠性。【结论】基于氮素运转规律构建的小麦籽粒蛋白质含量遥感预测模型,可以作为应用开花期遥感信息来预测籽粒蛋白质含量的机理性解释,初步实现了本研究区域和年际间的籽粒蛋白质含量预测,具有一定的应用前景。  相似文献   

5.
【目的】为提高棉花叶片叶绿素含量的反演精度,并掌握其在山东省夏津县的空间分布特征。【方法】本研究以山东省德州市夏津县为研究区,以夏津县大李庄棉田为试验区,通过SPAD(soil and plant analyzer development,SPAD)仪实地测定试验区棉花叶片叶绿素含量的相对值(SPAD值),并获取同期试验区无人机(unmanned aerial vehicle,UAV)近地多光谱图像和研究区Sentinel-2A MSI(MSI)卫星影像;然后分别基于UAV和MSI的光谱反射率,构建并筛选最优光谱参量,采用多元线性回归(multiple linear regression,MLR)建立SPAD值定量反演模型;最后采用二次多项式拟合法融合UAV和Sentinel-2A MSI对应的最优光谱参量,对比分析融合前后模型效果,优选最佳反演模型,实现研究区SPAD值反演。【结果】研究表明,(REG-R)/(REG+R)、R/G、CL(red edge)、NDVI可作为SPAD值的最优光谱参量;基于UAV图像的定量反演模型精度优于基于MSI影像的模型;基于二次多项式拟合后建模R 2提高了0.015—0.057,RMSE降低了0.457—0.638,验证R 2提高了0.040—0.085,RMSE降低了0.387—0.397,RPD提高了0.020—0.139;将融合后的MSI光谱参量代入基于UAV图像的反演模型(Fused MSI-ModUAV),也可获得较高的反演精度,建模R 2达0.672,RMSE为3.982,验证R 2达0.713,RMSE为3.859,RPD为1.685;基于上述模型进行研究区棉花叶片SPAD值反演分析,试验区整体呈南高北低的分布趋势,研究区呈中间低、四周高的分布趋势,均与实地情况一致,具有较好的预测效果。【结论】采用二次多项式拟合法融合无人机和卫星影像数据,可较好地实现区域高精度作物生长指标的定量反演,研究结果可丰富多源遥感融合理论与技术,为后续棉花长势监测与精准生产提供技术参考和数据支持。  相似文献   

6.
【目的】研究利用高光谱数据估算土壤表层有机质含量,为绿洲区大范围,快速,低成本,监测土壤表层有机质含量提供技术参考。【方法】以新疆博斯腾湖湖滨绿洲为研究区,采用地理加权回归模型,优选高光谱数据与土壤有机质含量的特征波段,构建研究区表层土壤有机质含量的高光谱估算模型。【结果】研究区表层土壤有机质含量变化不大,变化系数为55%,最小值为2.37 g/kg,最大值为51.47 g/kg,平均值为21.20 g/kg。土壤有机质特征波段主要集中在645~1 958 nm,其中1/R二阶的相关系数值最大为0.73,且在P=0.05水平下,通过显著性检验的波段数为83。构建的地理加权回归模型中,二维土壤指数1/R RSI建模效果最优,建模集R2=0.91,RMSE=2.56,验证集R2=0.95,RMSE=1.10。【结论】利用地理加权回归模型估算土壤有机质估算,建模效果可以达到一定的精度要求。  相似文献   

7.
【目的】研究实时、快速估测冬小麦不同生育时期水分状况并构建模型,为冬小麦水分精准管理提供科学依据。【方法】以新疆典型滴灌冬小麦为研究对象,应用高光谱成像技术获取冬小麦冠层光谱信息,并对原始光谱反射率进行平滑和数据变换,利用一元线性回归(Simple linear regression,SLR)、主成分回归(Principal components regression,PCR)和偏最小二乘回归(Partial least squares regression,PLSR)3种建模方法,对冬小麦冠层原始光谱及变换光谱分别构建植株水分含量估测模型。【结果】冬小麦冠层原始光谱反射率与植株水分含量相关性不高,对原始光谱反射率进行数据变换可以显著增强与水分含量的相关性和相关波段数,其中倒数一阶微分变换与冬小麦植株水分含量的相关系数最大,为-0.893 0,但不同变换最优相关系数所对应的波段位置并不固定。PLSR方法的模型精度最高,对数变换的PLSR模型估测精度最高,模型$R_{p}^{2}$、RMSEpRPD值分别为0.880 8、3.251 2%、2.934 3;冬小麦不同生育时期估测模型精度存在差异,拔节期、抽穗期估测模型精度较低,灌浆中期最高,其估测模型$R_{p}^{2}$、RMSEpRPD值分别为0.904 8、1.381 1%、3.454 7。【结论】利用高光谱成像技术对估测冬小麦植株水分含量是可行的,在灌浆中期的估测效果最佳。  相似文献   

8.
小麦氮素积累动态的高光谱监测   总被引:12,自引:1,他引:11  
 【目的】研究小麦地上部氮积累量与冠层高光谱参数的定量关系,分析多种高光谱参数估算地上部氮积累量的效果。【方法】连续3年采用不同蛋白质含量的小麦品种在不同施氮水平下进行大田试验,于小麦不同生育期采集田间冠层高光谱数据并测定植株不同器官生物量和氮含量。【结果】植株氮积累量随着施氮水平的提高而增加,不同地力水平间存在明显差异。植株氮积累量的光谱敏感波段主要存在于近红外平台和可见光区,而地上部氮积累量与冠层光谱的相关性明显降低。对植株氮积累量的光谱估算,在不同品种、氮素水平、生育时期和年度间可以使用统一的光谱模型。在籽粒灌浆期间植株氮积累量自开花期随时间进程的积分累积值与对应时期籽粒氮素积累状况存在显著的定量关系,根据特征光谱参数植株氮素营养籽粒氮积累量这一技术路径,以植株氮积累量为交接点将模型链接,建立高光谱参数与籽粒氮积累量间定量方程。将植株氮积累量与籽粒氮积累量相加,确立了基于高光谱参数的籽粒灌浆期间地上部氮积累量监测模型。经不同年际独立资料的检验表明,利用光谱参数SDr/SDb、VOG2、VOG3、RVI(810,560)、[(R750-800)/(R695-740)]-1和Dr/Db建立模型可以实时监测小麦地上部氮素积累动态变化,预测精度R2分别为0.774、0.791、0.803、0.803、0.802和0.778,相对误差RE分别为16.7%、15.5%、15.6%、18.5%、15.5%和17.3%。【结论】利用关键特征光谱参数可以有效地评价小麦地上部氮素积累状况,其中尤以植被指数VOG2、VOG3和[(R750-800)/(R695-740)]-1的效果更好。  相似文献   

9.
作物籽粒蛋白质含量遥感监测预报研究进展   总被引:2,自引:0,他引:2  
【目的】梳理目前作物资料蛋白质含量遥感监测预报研究进展,掌握最新该方面的研究方法、技术等。为发展优质专用谷物并依据以蛋白质含量为主导的不同类型谷物分类收获和加工探明发展道路。【方法】通过收集国内外籽粒蛋白质含量遥感监测预测研究文献,整理、分析及归纳当前研究内容,综述前人研究等方法。【结果】概述了3种常规的作物籽粒蛋白质含量检测方法,包括常规的室内分析化学法、近红外分析方法及遥感技术预测方法;介绍了植物碳氮代谢过程与籽粒蛋白质含量形成机理以及作物籽粒蛋白质遥感预测的可行性;然后归纳了4类作物籽粒蛋白质含量遥感监测预测等方法,分别为基于‘遥感信息—籽粒蛋白质含量’模式的经验模型、基于‘遥感信息—农学参数—籽粒蛋白质含量’模式的定量模型、基于遥感数据和生态因子的籽粒蛋白质含量半机理模型、基于遥感信息和作物生长模型结合的机理解释模型,并分别综述了这4类预测模型的国内外研究进展。【结论】明确了当前在籽粒蛋白质含量遥感预测中存在的问题及进一步解决的对策。  相似文献   

10.
【目的】叶面喷锌(Zn)是提高小麦籽粒锌含量进而解决人体缺锌问题的有效农艺措施。探明不同施氮(N)量下叶面喷锌后小麦全粒及面粉中的富锌效果及对蛋白组分含量的影响。【方法】基于长期定位试验,于2018—2020年连续进行了两年裂区田间试验。以基施不同用量氮肥(N0、N120、N240,施N量分别为0、120、240 kg∙hm-2)为主区,副区为灌浆前期喷施锌肥处理(Zn0、Zn1,分别为喷H2O、喷0.4% ZnSO4·7H2O),测定了灌浆前期和成熟期各部位锌含量、叶片等营养器官中锌向籽粒的转移量及分配、籽粒和面粉中蛋白质及其组分含量。【结果】与N0相比,N120和N240处理籽粒产量显著提高,增幅达88%—114%,但N120和N240处理之间并无显著差异。叶面喷锌均能显著提高小麦籽粒和面粉锌含量且籽粒达富锌标准,而不受施氮量的影响,其中,N120、N240处理小麦籽粒锌含量分别比N0处理提高0.95和1.12倍。与N0相比,施用氮肥均提高了小麦灌浆前期叶片等营养器官中氮、锌向籽粒的转移量,但降低了二者的转移比例,其中氮转移比例由60.2%下降至48.6%,锌由55.4%下降至42.3%。无论喷锌与否,氮、锌向籽粒的转移量及成熟期籽粒中氮、锌含量均呈显著线性正相关,且喷锌时氮、锌协同效应更为显著。与灌浆前期相比,成熟期小麦籽粒和面粉中储藏蛋白(醇溶蛋白和谷蛋白)含量显著增加,约占蛋白含量的80%—84%。施氮对籽粒和面粉中醇溶蛋白和谷蛋白含量提升幅度高于清蛋白和球蛋白,且以谷蛋白最大,而喷锌不影响籽粒和面粉中蛋白质及其组分含量,但在Zn1条件下,施氮对籽粒和面粉中谷蛋白含量的提高幅度高于Zn0条件下,分别提升37.5%和38.1%。【结论】叶面喷锌能够实现籽粒富锌,但不影响籽粒和面粉中蛋白质及其组分含量,表明籽粒和面粉中存在足够的用于锌储存的蛋白质库。因此在潜在缺锌石灰性土壤上,通过合理施用氮肥结合小麦灌浆前期叶面喷锌,能在保证小麦高产稳产的同时提高籽粒氮、锌营养品质。  相似文献   

11.
耐低氮糜子品种的筛选及农艺性状的综合评价   总被引:1,自引:0,他引:1  
【目的】探明耐低氮糜子品种的评价方法,筛选耐低氮糜子基因型材料及鉴定指标,为耐低氮品种的选育和耐低氮生理机制的研究提供理论依据。【方法】采用大田试验,以来自国内外100份糜子品种为材料,在低氮胁迫(0纯氮)和正常施氮(150 kg·hm-2纯氮)处理下,连续2年进行株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积9个主要农艺性状和氮含量、氮素吸收共11个指标的测定,采用隶属函数法计算各指标耐低氮胁迫指数,通过主成分分析、回归分析与聚类分析评价各糜子品种的综合耐低氮能力。【结果】供试品种在不同氮水平条件下的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积、氮含量、氮素吸收均存在显著差异;低氮胁迫下,糜子的生长、生物量积累和氮素吸收受到抑制,各性状指标明显下降,变化范围幅度降低,各农艺指标降低幅度排序依次为叶面积>草重>单株粒重>单株穗重>茎粗>主茎节数>穗长>千粒重>株高,不同糜子品种籽粒的氮含量和氮素吸收均降低,降低幅度为氮素吸收>氮含量;低氮胁迫下,不同糜子品种的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重的变异系数大于正常施氮水平各指标的变异系数;不同氮水平下,不同糜子籽粒氮素吸收的变异系数高于氮含量的变异系数,且低氮胁迫的氮素吸收的变异系数高于正常施氮处理。对11个指标的耐低氮胁迫指数进行主成分分析,选择了5个主成分,累积方差贡献率达75.83%;株高、穗长、草重、单株穗重、单株粒重、单株叶面积、氮吸收量的耐低氮胁迫指数与耐低氮综合评价值(D)的相关性均达极显著水平,其中,单株穗重、单株粒重、氮吸收量的相关性较高,其相关系数分别为0.858、0.812和0.812;根据耐低氮综合评价D值,通过聚类分析将100份糜子品种划分为耐低氮型、中间型和不耐低氮型3种类型。【结论】单株穗重、草重、氮吸收量等指标作为糜子耐低氮能力评价的首选指标;榆糜3号、2058、榆黍1号、雁黍7号4个品种耐低氮能力最强。  相似文献   

12.
【目的】明确光周期对糜子生理生态指标的影响,为糜子光周期遗传调控网络及相关基因定位奠定基础。【方法】通过盆栽试验设置4种光周期处理,选用光敏感性差异不同的3个品种(N1-光钝感-内糜1号,N2-光中间-内糜2号,N3-光敏感-宁糜14号),调查不同处理植株的物候期,测定不同处理抽穗期内源激素含量、成熟期株高、籽粒蛋白质含量和光钝感品种抽穗后的净光合速率。【结果】长日照显著延长糜子生育期,增加株高,光敏感品种N3全生育期长日照生育期天数和株高较短日照分别增加62.07%、104.24%,光钝感品种N1为3.51%、33.35%;随着生育进程的推进,抽穗后叶片净光合速率表现出明显差异,延长光照能显著增强糜子叶片净光合速率,增加干物质积累;光周期处理下不同光敏感品种内源激素变化明显,一定浓度IAA促进抽穗,IAA与GA和ZR呈极显著正相关,相关系数分别为0.51和0.40,与ABA呈极显著负相关(-0.62),ABA与GA和ZR呈极显著负相关,分别为-0.70和-0.39,GA与ZR呈极显著正相关(0.47);全生育期短日照条件下不同光敏感品种籽粒蛋白质含量显著高于其他处理,全生育期短日照N1-2、N2-2、N3-2蛋白质含量较全生育期长日照N1-4、N2-4、N3-4分别高18.89%、80.50%和61.23%。光敏感品种较光钝感品种的籽粒蛋白质含量更容易受短日照影响。【结论】光周期显著影响不同光敏感性糜子生长发育及内源激素含量,长日照显著延长糜子生育期、增加植株株高和增强叶片净光合速率,但降低籽粒蛋白质含量,一定浓度IAA含量调控糜子由营养生长向生殖生长转变。  相似文献   

13.
小麦叶层氮含量估测的最佳高光谱参数研究   总被引:12,自引:3,他引:9  
 【目的】作物体内氮素状况是评价长势和预测产量的重要指标。小麦植株氮素营养的快速监测和无损诊断对于精确氮素管理具有重要作用。本文旨在通过对高光谱信息的精细分析和信息提取,探索建立小麦叶片氮含量(LNC,leaf nitrogen content)估算的最佳波段、光谱参数及监测模型。【方法】利用连续4年的系统观测资料,采用精细采样法,详细分析350~2 500 nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段组合而成的主要高光谱指数与小麦冠层叶片氮含量的定量关系。【结果】发现小麦叶片氮含量的最佳波段为位于红边的690、691、700和711 nm以及近红外波段的1 350 nm;基于归一化光谱指数NDSI(R1350,R700)和NDSI(FD700,FD690)、比值光谱指数RSI(R700,R1350)和RSI(FD691,FD711)、土壤调节光谱指数SASI(R1350,R700)(L=0.09)和SASI(FD700,FD690)(L=-0.01)构建氮含量监测模型,决定系数(R2)分别为0.851和0.857、0.842和0.893、0.860和0.866。利用独立试验资料对模型检验的结果显示,模型测试的精度(R2)均大于0.758,RRMSE均小于0.266,尤其是高光谱参数RSI(FD691,FD711)和SASI(FD700,FD690)表现最好。【结论】总体上,利用精细采样法确定最佳波段,构建植被指数和氮含量监测模型,可显著提高模型的精确度和可靠性,从而为快速无损诊断小麦叶层的氮素状况提供新的波段选择和技术途径。  相似文献   

14.
【目的】通过分析不同氮肥水平对糜子干物质积累、转运及生育后期功能叶片氮素代谢的影响,探讨糜子干物质积累、转运特征和氮代谢变化规律,为糜子节肥增产提供理论依据。【方法】采用大田试验,以榆糜2号为试验材料,设置60 kg·hm-2(N1)、105 kg·hm-2(N2)、150 kg·hm-2(N3)、195 kg·hm-2(N4)4种不同施氮水平,以不施肥为对照(CK)。连续两年研究了糜子抽穗期、开花期、灌浆期和成熟期干物质积累、转运及产量变化,分析了不同氮肥条件下,糜子旗叶、倒二叶和倒三叶叶片的谷氨酰胺合成酶(GS)活性、硝酸还原酶(NR)活性、游离氨基酸含量和可溶性蛋白含量以及籽粒中含氮量、蛋白质含量等氮素代谢指标的变化规律,进一步研究了不同氮肥水平下糜子产量及产量构成因素的变化,总结了糜子干物质积累特性、叶片氮素代谢与产量的相关性。【结果】试验结果表明,随着施氮量的增加,糜子不同器官的地上部干重呈先上升后下降的趋势,开花期糜子N3(150 kg·hm-2)处理下的茎干重、叶干重、鞘干重和穗干重最大,分别比不施肥(CK)提高了51.2%、40.8%、64.2%和41.3%;氮肥处理促进了糜子抽穗后植株干物质在不同器官中的移动与转运,提高了地上部器官对籽粒的贡献率。其中,N3(150 kg·hm-2)处理下的叶干物质移动率比不施肥提高了9.6%,转运率提高了12.4%;氮肥处理下的糜子不同叶位叶片GS活性、NR活性、游离氨基酸含量以及可溶性蛋白含量均表现出先上升后下降的变化趋势,但施氮不影响糜子生育期内叶片氮素代谢的整体变化规律。同一生育时期,糜子顶3叶叶片GS活性、NR活性、游离氨基酸含量以及可溶性蛋白含量均表现为旗叶>倒二叶>倒三叶,N3(150 kg·hm-2)处理下达到最大值;氮肥处理下的糜子籽粒含氮量比不施肥分别提高了4.0%、6.0%、7.8%和8.9%;不同处理籽粒蛋白质含量变化趋势基本一致,分别较不施肥增加3.89%、5.75%、7.54%和8.59%,并且差异均与CK达到显著水平。氮肥处理显著增加了糜子穗长、茎粗、单株穗数和千粒重及产量,2015年,不同氮肥处理条件下的糜子产量较不施肥分别增加10.09%、29.71%、44.73%和35.99%;2016年分别增加19.08%、30.60%、65.85%和39.14%。两年试验条件下,N3(150 kg·hm-2)处理的糜子产量增加比例均最大,增产效果最好。【结论】适宜的施氮量可促进糜子干物质积累与转运,有利于改善生育后期糜子叶片的氮素代谢,延缓了叶片的衰老,提高糜子产量。本试验条件下,陕北地区糜子生产的最佳氮肥施用量为150 kg·hm-2。  相似文献   

15.
李天胜  崔静  王海江  杨晋 《新疆农业科学》2019,56(10):1772-1782
【目的】以高光谱技术为核心,结合理化数据,建立快速、无损的冬小麦冠层水分含量估算模型,为利用高光谱技术进行小麦水分含量的无损检测提供参考。【方法】测定两种冬小麦的叶片、植株含水量,采集其光谱数据作SG平滑、一阶导数和二阶导数处理,分析其相关关系,构建冬小麦叶片和植株含水量的多种估算模型,进行精度评价。【结果】不同光谱数据处理中一阶导数变换能够显著增加与小麦含水量的相关性,叶片含水量在456 nm波长处达到了最大负相关,相关系数为0.87,植株含水量在457 nm波长处达到了最大负相关,相关系数为0.890 9;偏最小二乘回归构建的水分含量估测模型拟合精度优于线性和多元回归模型,线性模型采用R650、SG1944、R′456、R″681构建的模型估测叶片含水量较好,估测植株含水量R664、SG663、R′457、R″ 681精度较高; 多元线性回归和偏最小二乘回归都是采用一阶导数变换构建的模型拟合精度最高,叶片和植株水分含量估测模型的外部检验R2分别达到0.803 2、0.867 0、0.854 0、0.885 6。【结论】小麦原始光谱一阶导数变换后能够显著提高与水分含量的相关性,利用PLSR方法构建的小麦水分含量估测模型拟合精度最高。  相似文献   

16.
【目的】 在叶片水平上构建基于高光谱的苹果品种叶片铁素含量估测模型,为探寻实时、高效、无损的果树树体营养诊断提供技术途径。【方法】以苹果品种岩富10号为材料,测定岩富10号叶片光谱数据和铁素含量,采用光谱分析和相关分析法,筛选与叶片铁素含量相关性较强的光谱组合,利用偏最小二乘法构建苹果叶片铁素含量光谱估测模型。【结果】岩富10号苹果叶片一阶微分光谱与铁素含量的敏感波段为R′990R′1 113R′1 360R′1 408,相关系数最高为-0.698 9。对敏感波段两两进行加、减、乘、除运算,最优波段组合形式R′990×R′1 048与铁素含量相关系数为0.846 2。估测模型拟合度(R2)最高为0.827 5。【结论】苹果叶片一阶微分光谱组合与铁素含量显著相关(P<0.05),光谱组合能够明显提高其相关性,偏最小二乘法与逐步回归建模相比估算模型的精度更佳,可以用于苹果叶片铁素含量的光谱估算。  相似文献   

17.
基于高光谱的水稻叶片含水量监测研究   总被引:9,自引:2,他引:7  
【目的】建立快速、无损诊断水稻叶片含水量的估测模型,为水稻水分精确管理提供依据。【方法】基于2年不同土壤水分处理和水稻品种的池栽试验,于水稻主要生育时期同步测定顶部4张叶片的光谱反射率和含水量,系统分析350-2 500 nm波段范围内任意两波段组合而成的比值(RSI)、归一化差值(NDSI)及差值(DSI)光谱指数,并分析其与叶片含水量的量化关系。【结果】不同土壤水分处理和叶位间,叶片反射光谱具有显著的时空变化特征,叶片含水量的敏感光谱波段主要位于近红外及短波红外区域;RSI (R1402, R2272)及NDSI (R1402, R2272)光谱指数与叶片含水量呈现良好的线性相关,线性拟合R2均达到0.80。基于独立试验资料对所建模型进行测试检验也显示,预测值和观察值的拟合R2也均达到0.86。【结论】RSI(R1402, R2272)、NDSI(R1402, R2272)均可用于水稻叶片含水量的定量监测。  相似文献   

18.
【目的】 研究一种快速、简便、无损的苹果冠层叶绿素含量估测模型。探索苹果品种岩富10号冠层的高光谱特征和叶绿素含量的估测方法,为该地区岩富10号苹果营养的快速诊断奠定基础,为红富士苹果精准化管理和-7光谱尺度研究提供参考依据。【方法】以红富士苹果(Malus domestica Borkh. cv. Red Fuji)主栽品种岩富10号叶绿素含量以及冠层高光谱反射率为数据源,分析叶绿素含量与冠层原始光谱(R)、微分光谱(R')之间的相关关系,利用敏感波段建立新的对应关系,构建岩富10号叶绿素含量的多种回归估测模型,并对不同模型进行了精度评价。【结果】微分光谱用于岩富10号叶绿素含量的估测精度要显著高于原始光谱反射率;利用敏感波段组合新定义的衍生变量拟合程度更优;在多种回归方式中,三次多项式模型的拟合程度最好,最优模型为357 nm等7个波段组合定义的新植被指数所建立的三次多项式模型,其精度为0.839。【结论】应用光谱技术对南疆塔里木盆地阿克苏地区岩富10号叶绿素含量进行定量反演是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号