首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对原位自生Al2O3增强钼基复合材料晶粒较大的问题,采用溶胶-凝胶与高能球磨相结合的方法细化复合材料晶粒,并利用SEM、XRD对不同球磨工艺所制备Al2O3/Mo复合粉末及复合材料的组织进行了观察和分析。结果表明:随着球磨时间的延长,Al2O3/Mo复合粉末颗粒由球状变为层片状再成为细小的球状,颗粒大小由约1.5μm细化为约500nm,其中的钼晶粒不断细化;高球料比所得粉末的分散性和破碎细化程度较好;转速提高使得粉末颗粒的尺寸均匀程度降低,且伴有结块现象,不利于粉末的细化。在球料比5∶1、转速300r/min、球磨时间60h条件下获得的复合粉末,经压坯烧结可制备出Al2O3颗粒为纳米级的钼基复合材料。  相似文献   

2.
采用高能球磨法将Cu粉和Al2O3粉混合;通过调节球磨时间,保证Al2O3粉细小而弥散分布在Cu的基体中。通过扫描电镜研究了球磨时间对Al2O3颗粒形貌与分布的影响,XRD研究了球磨时间对Cu晶粒细化和晶格畸变的影响,金相显微镜研究了球磨时间对金相组织的影响,研究了球磨时间对力学性能和导电率的影响,并计算了相对密度。结果表明:当球磨转速为270r/min、球磨15h时,Al2O3颗粒细小,分布较为均匀,且其抗压强度最高为565MPa,导电率34%IACS;随球磨时间增加,XRD表明Cu晶粒细化和晶格畸变增加,金相组织显示晶粒从片层状逐渐变为球状。  相似文献   

3.
采用溶胶-凝胶法制备Al2O3/Mo混合粉体,利用高能球磨法细化Al2O3/Mo复合材料中氧化铝和钼的晶粒尺寸,研究了球磨时间对Al2O3/Mo复合材料组织与性能的影响,利用XRD和扫描电镜对复合粉末形貌和复合材料进行了物相和形貌分析。研究表明:随着球磨时间的延长,复合粉末的形貌经历了球状到层片状再到球状的变化,粉末粒度逐渐减小,经粉末冶金烧结后的复合材料中,氧化铝和钼的粒径逐渐减小,经过60h的球磨,氧化铝颗粒的尺寸达到500nm左右;复合材料的密度呈现先增加后减小的趋势,显微硬度则逐渐上升至403.2HV。  相似文献   

4.
试验研究了超细WC-纳米Al_2O_3弥散强化Cu基复合材料粉末的机械球磨制备工艺。采用XRD、SEM、EDS等表征手段,研究了机械球磨过程WC/Al_2O_3/Cu粉末形貌、强化相WC与Al_2O_3分布形态、Cu基体晶粒尺寸的变化规律。通过室温压制试验,研究了所制备粉末的压制特性。结果表明:在球磨转速300 r/min、球料比10:1(质量比)的条件下,经过100 min球磨,可获得WC、Al_2O_3颗粒均匀分布的Cu基复合材料粉末,Cu基体晶粒尺寸细化到约0.4μm。机械球磨WC/Al_2O_3/Cu复合材料粉末具有较好的压制成形性,其压制特性可用黄培云双对数压制方程描述。  相似文献   

5.
以机械破碎Al-7Si-0.3Mg合金粉末为原料进行高能球磨, 对不同球磨时间的合金粉末进行金相观察、X射线衍射分析、透射电镜表征及显微硬度测试, 研究球磨时间对纳米晶Al-7Si-0.3Mg合金粉末的影响。结果发现, 高能球磨导致共晶硅颗粒从微米尺度细化到亚微米尺度, 颗粒形状从多面体转变成圆形, 颗粒内部有层错生成。随着球磨时间逐渐增加到60 h, 合金粉末平均颗粒尺寸从134μm逐渐下降到22μm, Al(Si, Mg)基体晶粒尺寸从438 nm降低到23 nm, 粉末显微硬度从HV 93增加到HV 289。粉末硬度的增加主要归功于球磨导致的晶粒细化(细晶强化作用), 此外, 球磨过程中硅颗粒的细化以及球磨引起的Mg、Si原子在基体内固溶度的增加也有利于粉末硬度的提高。  相似文献   

6.
弥散强化Cu是一种广泛应用于汽车和电子行业的高强高导Cu基复合材料。本文采用机械合金化法制备了Al2O3颗粒弥散强化Cu合金,并对比研究了微量Ag、Ni、Zr、Hf和Ti合金元素对Cu-1.20%Al2O3弥散强化Cu合金微观组织和硬度的影响。XRD结果表明高能球磨能有效地固溶Al2O3弥散相到Cu基体中;硬度测试表明添加Ag元素能显著地提高弥散强化Cu的维氏硬度,添加Ni和Hf元素仅在一定程度上改善弥散强化Cu的维氏硬度,而添加Zr和Ti元素则对提高弥散强化Cu的硬度作用不大;SEM表征结果显示有Ag掺杂的弥散强化Cu合金中的Al2O3弥散相粒径明显小于未掺杂Ag的情况。弥散强化Cu硬度的提高与Ag在Cu与Al2O3相界面的偏聚进而有效抑制弥散Al2O3颗粒长大紧密相关。  相似文献   

7.
高能球磨合成纳米WC-Co复合粉末的特性   总被引:2,自引:0,他引:2  
采用变转速多次循环高能球磨工艺在32min制备出了平均晶粒尺寸约为25nm的纳米WC-10CO-0.8VC-0.2Cr3C2(重量分数)复合粉末,并用化学元素分析、XRD,TEM,DTA对纳米WC—Co复合粉末的特性进行了表征和分析。结果表明,变转速多次循环高能球磨工艺制备的纳米WC—CO复合粉末,化学成分合格,杂质含量低,球磨效率高;球磨过程是一个晶粒逐渐细化的过程,同时也是一个晶格畸变逐渐增加、粉末体系能量逐渐增大的过程;球磨得到的WC-Co纳米复合粉末颗粒形貌基本为球形,粒径分布较宽,颗粒中存在着一些团聚体,平均颗粒尺寸约为50nm;纳米WC-10Co-0.8VC-0.2Cr3C2(wt%)复合粉末的共晶点约为1280℃。纳米复合粉末中W,Co,V,Cr元素分布均匀弥散。  相似文献   

8.
采用高能球磨法制备Pb质量分数为5%的纳米Al-5%Pb复合粉末,经过单轴向冷压成形后,于573~723K温度范围内在氩气保护下进行不同时间的等温退火处理,利用X射线衍射仪、扫描电镜和透射电镜等分析与观察复合粉末的物相组成与显微形貌,研究弥散分布在纳米晶Al基体上的纳米相Pb的长大行为。结果表明,尽管组成相Al和Pb的尺寸均在纳米级,Al-5%Pb复合结构中第二相Pb的长大仍遵循传统两相体系中第二相的长大规律,即纳米相Pb尺寸的三次方与退火时间呈线性关系。但纳米相Pb的长大激活能接近基体相Al的晶界自扩散激活能,其长大是通过Pb原子沿Al基体的晶界扩散实现的。  相似文献   

9.
通过机械球磨制备了SiC颗粒(SiCp)增强镁基复合材料粉末(AZ91?xSiCp,x=5%、10%、15%,体积分数),实现了镁基体纳米化及亚微米级SiCp在镁基体中的均匀弥散分布,研究了SiCp对球磨后粉末微观组织的影响规律。结果表明,SiCp第二相的引入能够促进机械球磨过程中镁基体晶粒的细化,晶粒细化程度随SiCp体积分数的增加有所加强,同时SiCp含量的提高对Al元素在镁基体中的固溶及其自身颗粒的细化起到抑制作用。球磨后AZ91?xSiCp(x=5%、10%、15%)复合粉末的硬度分别为HV 166、HV 175和HV 185,强化机制为细晶强化、弥散强化、固溶强化和承载强化,计算得到AZ91?5%SiCp复合粉末不同强化机制所引起的强化效果占比分别为86.9%、7.4%、1.8%和3.8%。  相似文献   

10.
采用高能球磨细化晶粒、原位反应合成及热压技术制备了致密的Al2 O3 p TiCp/Al复合材料 ,并用XRD、SEM、以及EDAX等手段分析了复合材料的相组成、显微组织。结果表明 :Al TiO2 C三元体系在热压反应烧结后 ,可制得致密度较高的Al2 O3p TiCp/Al原位复合材料 ,其显微组织中Al2 O3 和TiC颗粒尺寸为 1μm左右 ,分布均匀。高能球磨有利于增强颗粒细化及弥散分布和反应。  相似文献   

11.
卢百平  韦雯  刘灿成  徐辉 《粉末冶金技术》2012,30(2):130-134,139
采用高能球磨法制备超细Al2O3粉末,研究了球磨时间、球磨转速及工艺控制剂等工艺参数对Al2O3粉末粒度和形貌的影响。结果表明:在一定范围内,延长球磨时间,提高球磨转速均能有效地减小颗粒尺寸;在球磨过程中加入工艺控制剂,能有效地防止粉末粘附在磨球和磨罐上,并改善粉末颗粒的均匀性。在本文试验条件下,加入工艺控制剂乙醇,球磨转速为400r/min,球磨时间为30h等条件下,获得Al2O3粉末的D50为0.82μm,Al2O3粉末粒径分布在0.12~6.37μm范围内。  相似文献   

12.
采用溶胶喷雾干燥-煅烧还原方法制备超细/纳米W-La2O3复合粉末,将粉末压制成形后在1 950℃烧结,制备La2O3弥散强化钨合金,检测合金的密度与强度,并采用SEM对超细粉末形貌、合金的组织结构、断口形貌进行分析,结果表明:随La2O3加入量增加,粉末颗粒显著细化,W-0.7%La2O3复合粉末的粒径仅为0.1μm;制备的W-La2O3超细/纳米复合粉末具有很高的烧结活性,烧结后,合金最高相对密度达到99.1%;La2O3均匀弥散分布于钨晶界,抑制钨合金的晶粒长大,提高材料的强度,W-0.7%La2O3合金中钨平均晶粒尺寸仅为8.7μm,抗弯强度达到548 MPa;合金的断裂形式表现为穿晶-沿晶共有的复合断裂形式。  相似文献   

13.
将初始Zr粉和V粉按一定比例混合 ,用高能球磨设备制备Zr V纳米粉末 ,利用XRD和SEM及TEM研究研磨过程中粉末的物相及粒度变化。结果表明 ,粉末的晶粒尺寸随研磨时间的增加而减少 ,适当增加转速 ,可以缩短晶粒细化时间 ;通过高能球磨可以制备出粉末晶粒尺寸在 10nm左右 ,粉末颗粒尺寸在 6nm左右的Zr V混合粉末  相似文献   

14.
机械合金化Ti/Al合金的制备   总被引:3,自引:0,他引:3  
采用多维摆动式球磨机机械合金化Ti/Al二元粉末,研究了机械合金化过程中粉末结构的变化。Ti/Al混合粉末经高能球磨后,颗粒尺寸下降,Ti、Al晶粒各自逐渐细化至纳米级尺寸,且部分形成非晶,球磨15h后发现了TiAl和Ti3Al金属间化合物。将机械合金化后的粉末进行放电等离子烧结,烧结试样的组成相主要为TiAl和Ti3Al。  相似文献   

15.
本实验向雾化Fe-12.8Cr-3.4W铁基粉末中引入氮化物粉末进行球磨,然后对球磨粉末进行热挤压和热轧制制备得到合金样品。对雾化粉末和球磨粉末的形貌和成分、各组成形合金的显微组织、各组成形合金的力学性能以及断口形貌进行了研究。实验结果表明,球磨对粉末晶粒起到了细化作用,同时球磨后粉末与空气接触会引入少量的氧,YN(氮化钇)的引入起到了细化球磨粉末的作用;在氮化物弥散强化合金中检测到了尺寸小于100 nm的Ti N和TiO_2的复合弥散颗粒,少量弥散颗粒与合金中的Cr、W、Y和O元素结合长大形成大于100 nm的复杂化合物颗粒。采用氮化钇制备的合金抗拉强度与氧化钇合金基本相同,延伸率增加,同时显微硬度提高;采用氮化钛和氮化钇进行制备的合金显微硬度进一步增加。  相似文献   

16.
采用溶胶喷雾干燥–氢热多步还原法制备含微量稀土Y2O3的超细/纳米W复合粉,对其进行高能球磨处理。将球磨前、后的W-Y2O3复合粉末进行模压成形和1 800~1 950℃高温烧结,制备微量Y2O3弥散细晶钨合金,研究高能球磨对细晶W-Y2O3合金的密度与显微组织的影响。研究结果表明:W-Y2O3复合粉末的费氏粒度均小于0.9μm,具有很高的烧结活性,最佳烧结温度为1 860℃,烧结致密度达到97.4%;高能球磨可显著提高合金的致密度,球磨后的W-Y2O3复合粉末在1 860℃烧结后相对密度达到99.4%;W-Y2O3合金的晶粒非常细小,未高能球磨的W-Y2O3复合粉在1 860℃烧结,晶粒尺寸仅为3μm左右,但分布不均匀;适当的球磨使合金晶粒尺寸有所长大,但可显著改善合金组织的均匀性。  相似文献   

17.
采用高能球磨法制备Cu-50%Cr(质量分数)纳米晶复合粉末。利用X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)、能谱分析(EDS)以及透射电镜(TEM)等方法,研究球磨时间和过程控制剂(PCA)对复合粉末的晶粒尺寸、微观组织与形貌的影响,采用热力学模型对该体系的固溶度进行计算和分析。结果表明:当PCA含量为0时,晶粒的细化效果最好,但产率较低;当PCA的添加量过多,晶粒的细化效果不明显;在本实验条件下,PCA的最佳质量分数添加量为5%。随球磨时间的延长,晶粒逐渐细化,晶格畸变先增大后减小;经60 h球磨,可获得Cu和Cr两相均匀分布的复合粉末,其平均晶粒尺寸为10 nm左右,Cr在Cu中的固溶度显著提高,热力学计算结果表明其固溶度为7%(质量分数)。  相似文献   

18.
高能球磨制备纳米晶镁合金粉末的研究   总被引:1,自引:0,他引:1  
利用氩气保护下的高能球磨,制备了纳米晶AZ31镁合金粉末。采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等方法,研究了高能球磨过程中粉末微观组织与形貌演变规律。结果表明:随着球磨时间的延长,镁合金粉末的晶粒尺寸逐渐减小,微观应变和晶格常数逐渐增大;粉末颗粒首先被碾压成扁平状并相互焊合使颗粒尺寸粗化,然后随球磨的继续进行发生断裂,使颗粒尺寸逐渐减小;球磨80h后,粉末组织与形貌均趋于稳定,获得了平均颗粒尺寸为15~20μm、晶粒尺寸为85nm左右的纳米晶AZ31镁合金粉末。  相似文献   

19.
采用高能球磨法制备出了用于生产纳米晶稀土硬质合金的原料粉末。通过XRD、SEM和DTA等分析检测手段,研究了该纳米WC—Co—RE粉末的结构、形貌和相的变化。结果表明:高能球磨45h,可获得晶粒尺寸约为8.45mm的WC—Co—RE粉末;微量稀土的加入,有利于粉末晶粒的细化;在25~45h范围内,随着高能球磨时间的延长,粉末晶粒尺寸的减小趋势符合直线变化规律,且掺稀土粉末的晶粒尺寸比未掺稀土粉末的晶粒尺寸减小一半;高能球磨25h,粉末中Co相的X射线衍射峰消失。高能球磨ⅥE—Co—RE粉末的DTA曲线在597℃出现了一个尖锐的放热峰。高能球磨WC—Co—RE粉末固结之后,所制得合金的晶粒细小且机械性能较好。  相似文献   

20.
不同增强相弥散强化铜的导电性   总被引:6,自引:0,他引:6  
用高能球磨冷压烧结方法制备了Cu/Al2O3和Cu/WC弥散强化铜,检测和分析了其导电性能。结果表明:两种弥散强化铜的电阻率实验值均大于其计算值。同一增强相含量越高,弥散强化铜导电性越低。相同体积分数不同,增强相的Cu/Al2O3和Cu/WC的导电性能相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号