首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical characteristics of Al/strained Si-on-insulator (sSOI) Schottky diode have been investigated using current–voltage (I–V) and capacitance–voltage (C–V) measurements in the wide temperature range of 200–400 K in steps of 25 K. It was found that the barrier height (0.57–0.80 eV) calculated from the I–V characteristics increased and the ideality factor (1.97–1.28) decreased with increasing temperature. The barrier heights determined from the C–V measurements were higher than those extracted from the I–V measurements, associated with the formation of an inhomogeneous Schottky barrier at the interface. The series resistance estimated from the forward I–V characteristics using Cheung and Norde methods decreased with increasing temperature, implying its strong temperature dependence. The observed variation in barrier height and ideality factor could be attributed to the inhomogeneities in Schottky barrier, explained by assuming Gaussian distribution of barrier heights. The temperature-dependent I–V characteristics showed a double Gaussian distribution with mean barrier heights of 0.83 and 1.19 eV and standard deviations of 0.10 and 0.16 eV at 200–275 and 300–400 K, respectively. From the modified Richardson plot, the modified Richardson constant were calculated to be 21.8 and 29.4 A cm−2 K−2 at 200–275 and 300–400 K, respectively, which were comparable to the theoretical value for p-type sSOI (31.6 A cm−2 K−2).  相似文献   

2.
The electrical analysis of Ni/n-GaP structure has been investigated by means of current–voltage (IV), capacitance–voltage (CV) and capacitance–frequency (Cf) measurements in the temperature range of 120–320 K in dark conditions. The forward bias IV characteristics have been analyzed on the basis of standard thermionic emission (TE) theory and the characteristic parameters of the Schottky contacts (SCs) such as Schottky barrier height (SBH), ideality factor (n) and series resistance (Rs) have been determined from the IV measurements. The experimental values of SBH and n for the device ranged from 1.01 eV and 1.27 (at 320 K) to 0.38 eV and 5.93 (at 120 K) for Ni/n-GaP diode, respectively. The interface states in the semiconductor bandgap and their relaxation time have been determined from the Cf characteristics. The interface state density Nss has ranged from 2.08 × 1015 (eV?1 m?2) at 120 K to 2.7 × 1015 (eV?1 m?2) at 320 K. Css has increased with increasing temperature. The relaxation time has ranged from 4.7 × 10?7 s at 120 K to 5.15 × 10?7 s at 320 K.  相似文献   

3.
Thin film of SnSe is deposited on n-Si single crystal to fabricate a p-SnSe/n-Si heterojunction photovoltaic cell. Electrical and photoelectrical properties have been studied by the current density–voltage (JV) and capacitance–voltage (CV) measurements at different temperatures. The fabricated cell exhibited rectifying characteristics with a rectification ratio of 131 at ±1 V. At low voltages (V<0.55 V), the dark forward current density is controlled by the multi-step tunneling mechanism. While at a relatively high voltage (V>0.55 V), a space charge-limited-conduction mechanism is observed with trap concentration of 2.3×1021 cm−3. The CV measurements showed that the junction is of abrupt nature with built-in voltage of 0.62 V which decreases with temperature by a gradient of 2.83×10−3 V/K. The cell also exhibited strong photovoltaic characteristics with an open-circuit voltage of 425 mV, a short-circuit current density of 17.23 mA cm−2 and a power conversion efficiency of 6.44%. These parameters have been estimated at room temperature and under light illumination provided by a halogen lamp with an input power density of 50 mW cm−2.  相似文献   

4.
The current-voltage (I-V) characteristics of Au/n-GaP Schottky barrier diode was analyzed in wide temperature range of 220–400 K. The conduction mechanism in the low bias region, except for 220 K and 240 K, was identified as tunneling (TN). Nevertheless, thermionic emission (TE) becomes dominant as the voltage increases. The diode parameters were evaluated in this region by TE model incorporating the concept of thin insulating layer. The series resistance (Rs) of the device was found to decrease with increase in temperature. In the 220–320 K temperature range, as reported for most of the Schottky diodes, the zero-bias barrier height (ϕb0) decreases and the ideality factor (η) increases with the decrease of temperature. The value of modified Richardson constant (A**) obtained agrees well with the theoretical value. However, in the 320–400 K range, the variation of η and ϕb0 with temperature shows opposite trend, which is speculated as due to the change in conduction pattern by the temperature induced modifications at the interface.  相似文献   

5.
In this study, we have examined Au/TiO2/n-Si Schottky barrier diodes (SBDs), in order to interpret in detail the experimental observed non-ideal current–voltage–temperature (I–V–T) characteristics. I–V characteristics were measured in the wide temperature range of 80–400 K. TiO2 was deposited on n-Si substrate by reactive magnetron sputtering. The zero-bias barrier height (ϕB0) and ideality factor (n) show strong temperature dependence. While n decreases, ϕB0 increases with increasing temperature. Experimental results show that the current across the SBDs may be greatly influenced by the existence of Schottky barrier height (SBH) inhomogeneity. These temperature behaviors have been explained on the basis of the thermionic emission (TE) theory with Gaussian distribution (GD) of the barrier heights (BHs) due to BH inhomogeneities at metal–semiconductor (M/S) interface. From this assumptions, obtaining Richardson constant value of the A* 121.01 A/cm2 K2 is perfect agreement with the theoretical value of 120 A/cm2 K2 for n-type Si. Hence, behaviors of the forward-bias IV characteristics of the Au/TiO2/n-Si (SBDs) can be successfully explained on the basis of a TE mechanism with a double Gaussian distribution of the BHs.  相似文献   

6.
Au Schottky barrier diodes (SBDs) have been irradiated using high-energy carbon ion fluences of 1×1011, 1×1012 and 1×1013 cm−2. Current–voltage characteristics of unirradiated and irradiated diodes have been analyzed. The change in reverse leakage current increases with increasing ion fluence due to the irradiation-induced defects at the interface. The diodes were annealed at 523 and 623 K to study the effect of annealing. The rectifying behavior of the irradiated SBDs improves at 523 K. But at 623 K, the diode behavior deteriorates irrespective of the fluences. Better enhancement in the barrier height and also improvement in the ideality factor of the diodes has been observed at the annealing temperature of 523 K. Scanning Electron Microscopic analysis was carried out on the irradiated samples to delineate the projected range of the defects by high-energy carbon ion irradiation.  相似文献   

7.
AlGaN/GaN heterostructure field effect transistors (HFETs) were irradiated with 2 MeV protons, carbon, oxygen, iron and krypton ions with fluences ranging from 1 × 109 cm?2 to 1 × 1013 cm?2. DC, pulsed IV characteristics, loadpull and S-parameters of the AlGaN HFET devices were measured before and after irradiation. In parallel, a thick GaN reference layer was also irradiated with the same ions and was characterized by X-ray diffraction, photoluminescence, Hall measurements before and after irradiation. Small changes in the device performance were observed after irradiation with carbon and oxygen at a fluence of 5 × 1010 cm?2. Remarkable changes in device characteristics were seen at a fluence of 1 × 1012 cm?2 for carbon, oxygen, iron and krypton irradiation. Similarly, remarkable changes were also observed in the GaN layer for irradiations with fluence of 1 × 1012 cm?2. The results found on devices and on the GaN layer were compared and correlated.  相似文献   

8.
All RF sputtering-deposited Pt/SiO2/n-type indium gallium nitride (n-InGaN) metal–oxide–semiconductor (MOS) diodes were investigated before and after annealing at 400 °C. By scanning electron microscopy (SEM), the thickness of Pt, SiO2, n-InGaN layer was measured to be ~250, 70, and 800 nm, respectively. AFM results also show that the grains become a little bigger after annealing, the surface topography of the as-deposited film was smoother with the rms roughness of 1.67 nm and had the slight increase of 1.92 nm for annealed sample. Electrical properties of MOS diodes have been determined by using the current–voltage (IV) and capacitance–voltage (CV) measurements. The results showed that Schottky barrier height (SBH) increased slightly to 0.69 eV (IV) and 0.82 eV (CV) after annealing at 400 °C for 15 min in N2 ambient, compared to that of 0.67 eV (IV) and 0.79 eV (CV) for the as-deposited sample. There was the considerable improvement in the leakage current, dropped from 6.5×10−7 A for the as-deposited to 1.4×10−7 A for the 400 °C-annealed one. The annealed MOS Schottky diode had shown the higher SBH, lower leakage current, smaller ideality factor (n), and denser microstructure. In addition to the SBH, n, and series resistance (Rs) determined by Cheungs׳ and Norde methods, other parameters for MOS diodes tested at room temperature were also calculated by CV measurement.  相似文献   

9.
《Organic Electronics》2014,15(1):35-39
The temperature dependence of poly(3-hexylthiophene-2,5-diyl) (P3HT)/polystyrene (PS) blend organic transistor current/voltage (IV) characteristics has been experimentally and theoretically studied. The planar transistors, realized by drop casting the P3HT/PS ink, exhibit high mobilities (over 5 × 10−3 cm2 V−1 s−1) and good overall characteristics. A transistor model accounting for transport mechanisms in disordered organic materials was used to fit the measured characteristics. Using a single set of parameters, the measured effective mobility versus gate bias, either increasing or decreasing with the gate bias depending on temperature, is well reproduced over a wide temperature range (130–343 K). A Gaussian density of states width of 0.045 eV was determined for this P3HT/PS blend. The transistor IV characteristics are very well described considering disordered material properties within a self-consistent transistor model.  相似文献   

10.
We have studied the experimental linear relationship between barrier heights and ideality factors for palladium (Pd) on bulk-grown (1 1 1) Sb-doped n-type germanium (Ge) metal-semiconductor structures with a doping density of about 2.5×1015 cm?3. The Pd Schottky contacts were fabricated by vacuum resistive evaporation. The electrical analysis of the contacts was investigated by means of current–voltage (IV) and capacitance–voltage (CV) measurements at a temperature of 296 K. The effective barrier heights from IV characteristics varied from 0.492 to 0.550 eV, the ideality factor n varied from 1.140 to 1.950, and from reverse bias capacitance–voltage (C?2V) characteristics the barrier height varied from 0.427 to 0.509 eV. The lateral homogenous barrier height value of 0.558 eV for the contacts was obtained from the linear relationship between experimental barrier heights and ideality factors. Furthermore the experimental barrier height distribution obtained from IV and (C?2?V) characteristics were fitted by Gaussian distribution function, and their mean values were found to be 0.529 and 0.463 eV, respectively.  相似文献   

11.
The charge transport properties in a novel electroluminescent poly{[2-(4′,5′-bis(3″-methylbutoxy)-2′-p-methoxy-phenyl)phenyl-1,4-phenylene vinylene]-co-(9,9-dioctyl-2,7-fluorenylene vinylene)} (BPPPV-PF) have been studied using a time-of-flight (TOF) photoconductivity technique. The TOF transients for holes were recorded over a range of temperatures (207–300 K) and electric fields (1.5 × 105–6.1 × 105 V/cm). The hole transport in this polymer was weakly dispersive in nature with a mobility at 300 K of 5 × 10−5 cm2/V s at 2.5 × 105 V/cm. This increased to 8.4 × 10−5 cm2/V s at 6.1 × 105 V/cm. The temperature and field dependence of charge mobility has been analyzed using the disorder formalisms (Bässler’s Gaussian disorder model (GDM) and correlated disorder model (CDM)). The fit with Gaussian disorder (GDM) model yielded the mobility pre-factor μ = 1.2 × 10−3 cm2/V s, energetic disorder parameter σ = 82 meV and positional disorder parameter Σ = 1.73. The average inter-site separation (a = 7 Å) and the charge localization length (L = 3.6 Å) was estimated by assuming the CDM type charge transport. The microscopic charge transport parameters derived for this polymer are almost identical to the reported values for fully conjugated polymers with high chemical purity. The results presented indicate that the charge transport parameters can be controlled and optimized for organic optoelectronic applications.  相似文献   

12.
《Organic Electronics》2008,9(3):285-290
The triazine compound 4,4′-bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,1′-biphenyl (BTB) was developed for use as an electron transport material in organic light emitting devices (OLEDs). The material demonstrates an electron mobility of ∼7.2 × 10−4 cm2 V−1 s−1 at a field of 8.00 × 105 V cm−1, which is 10-fold greater than that of the widely used material tris(8-hydroxyquinoline) aluminum (AlQ3). OLEDs with a BTB electron transport layer showed a ∼1.7–2.5 V lower driving voltage and a significantly increased efficiency, compared to those with AlQ3. These results suggest that BTB has a strong potential for use as an OLED electron transport layer material.  相似文献   

13.
In order to evaluate current conduction mechanism in the Au/n-GaAs Schottky barrier diode (SBD) some electrical parameters such as the zero-bias barrier height (BH) Φbo(IV) and ideality factor (n) were obtained from the forward bias current–voltage (IV) characteristics in wide temperature range of 80–320 K by steps of 10 K. By using the thermionic emission (TE) theory, the Φbo(IV) and n were found to depend strongly on temperature, and the n decreases with increasing temperature while the Φbo(IV) increases. The values of Φbo and n ranged from 0.600 eV and 1.51(80 K) to 0.816 eV and 1.087 (320 K), respectively. Such behavior of Φbo and n is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of BHs at Au/n-GaAs interface. In the calculations, the electrical parameters of the experimental forward bias IV characteristics of the Au/n-GaAs SBD with the homogeneity in the 80–320 K range have been explained by means of the TE, considering GD of BH with linear bias dependence.  相似文献   

14.
《Organic Electronics》2007,8(5):591-600
Hybrid metal–insulator–semiconductor structures based on ethyl-hexyl substituted polyfluorene (PF2/6) as the active polymer semiconductor were fabricated on a highly doped p-Si substrate with Al2O3 as the insulating oxide layer. We present detailed frequency-dependent capacitance–voltage (CV) and conductance–voltage characteristics of the semiconductor/insulator interface. PF2/6 undergoes a transition to an ordered crystalline phase upon thermal cycling from its nematic-liquid crystalline phase, confirmed by our atomic force microscope images. Thermal cycling of the PF2/6 films significantly improves the quality of the (PF2/6)/Al2O3 interface, which is identified as a reduced hysteresis in the CV curve and a decreased interface state density (Dit) from ∼3.9 × 1012 eV−1 cm−2 to ∼3.3 × 1011 eV−1 cm−2 at the flat-band voltage. Interface states give rise to energy levels that are confined to the polymer/insulator interface. A conductance loss peak, observed due to the capture and emission of carriers by the interface states, fits very well with a single time constant model from which the Dit values are inferred.  相似文献   

15.
We report fabrication and electrical characterization of GaAs based metal-interfacial layer-semiconductor (MIS) device with poly[2-methoxy-5-(2/-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), as an interfacial layer. MEH-PPV raises the barrier height in Al/MEH-PPV/p-GaAs MIS device as high as to 0.87 eV. A Capacitance-Voltage (CV) characteristic exhibits a low hysteresis voltage with an interface states density of 1.69×1011 cm−2 eV−1. Moreover, a high transition frequency (fc) of about 50 kHz was observed in the accumulation mode. The photovoltaic response of Al/MEH-PPV/p-GaAs device was measured under the air masses (AM) 1.0 and 1.5. The open circuit voltage (VOC), short circuit current (ISC), fill factor and the efficiency of the Al/MEH-PPV/p-GaAs device were found to be 1.10 V, 0.52 mA, 0.65, and 5.92%, respectively, under AM 1.0 condition.  相似文献   

16.
The Pt nano-film Schottky diodes on Ge substrate have been fabricated to investigate the effect of annealing temperature on the characteristics of the device. The germanide phase between Pt nano-films and Ge substrate changed and generated interface layer PtGe at 573 K and 673 K, Pt2Ge3 at 773 K. The current–voltage(I - V) characteristics of Pt/n-Ge Schottky diodes were measured in the temperature range of 183–303 K. Evaluation of the I - V data has revealed an increase of zero-bias barrier height ΦB0 but the decrease of ideality factor n with the increase in temperature. Such behaviors have been successfully modeled on the basis of the thermionic emission mechanism by assuming the presence of Gaussian distributions. The variation of electronic transport properties of these Schottky diodes has been inferred to be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Therefore, the control of Schottky barrier height at metal/Ge interface is important to realize high performance Ge-based CMOS devices.  相似文献   

17.
This study demonstrated AlGaN/GaN Schottky barrier diodes (SBDs) for use in high-frequency, high-power, and high-temperature electronics applications. Four structures with various Fe doping concentrations in the buffer layers were investigated to suppress the leakage current and improve the breakdown voltage. The fabricated SBD with an Fe-doped AlGaN buffer layer of 8 × 1017 cm 3 realized the highest on-resistance (RON) and turn-on voltage (VON) because of the memory effect of Fe diffusion. The optimal device was the SBD with an Fe-doped buffer layer of 7 × 1017 cm 3, which exhibited a RON of 31.6 mΩ-cm2, a VON of 1.2 V, a breakdown voltage of 803 V, and a buffer breakdown voltage of 758 V. Additionally, the low-frequency noise decreased when the Fe doping concentration in the buffer layer was increased. This was because the electron density in the channel exhibited the same trend as that of the Fe doping concentration in the buffer layer.  相似文献   

18.
Copper indium gallium diselenide (CIGS) films were deposited as an absorber layer on polyethylene terephthalate (PET) substrates by a screen printing technique using CIGS ink with a Ga content ranging from 0.3 to 0.6. The melting point of PET substrate is 254.9 °C; the average transmission in the visible (400 nm–800 nm) for PET substrates is greater than 85%. Effects of Ga content of the CIGS absorber layer on structural and electrical properties of the CIGS films were studied. The lattice parameters, a and c for all CIGS films were decreased with increasing Ga content. At room temperature, Hall mobility and charge-carrier concentration of the CIGS films varies from 97.2 to 2.69 cm2 V−1 s−1 and 9.98×1016 to 3.23×1018 cm−3, respectively.  相似文献   

19.
We report the fabrication of bottom-gate thin film transistors (TFTs) at various carrier concentrations of an amorphous InGaZnO (a-IGZO) active layer from ~1016 to ~1019 cm−3, which exceeds the limit of the concentration range for a conventional active layer in a TFT. Using the Schottky TFTs configuration yielded high TFT performance with saturation mobility (μsat), threshold voltage (VTH), and on off current ratio (ION/IOFF) of 16.1 cm2/V s, −1.22 V, and 1.3×108, respectively, at the highest carrier concentration active layer of 1019 cm−3. Other carrier concentrations (<1019 cm−3) of IGZO resulted in a decrease of its work function and increase in activation energy, which changes the source/drain (S/D) contact with the active layer behavior from Schottky to quasi Ohmic, resulting in achieving conventional TFT. Hence, we successfully manipulate the barrier height between the active layer and the S/D contact by changing the carrier concentration of the active layer. Since the performance of this Schottky type TFT yielded favorable results, it is feasible to explore other high carrier concentration ternary and quaternary materials as active layers.  相似文献   

20.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号