首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过聚焦离子束在5A90铝锂合金试样表面蚀刻微米尺寸高分辨网格,在温度480℃、初始变形速率1×10~(-3)s~(-1)的变形条件下,定量研究其超塑性变形过程中晶界滑移和晶内位错滑移对总变形的贡献量,并采用扫描电镜、电子背散射衍射观察合金超塑性变形的组织演变作为佐证。结果表明:位错运动在超塑性变形初期(ε0.65)的贡献量约为60%~80%,为主要变形机制,在该阶段条带状晶粒逐渐细化和等轴化,平均晶粒尺寸减小约40%,晶粒转动作为协调机制;随着应变量的增大,发生明显的动态再结晶,晶粒尺寸开始增大,晶内位错滑移的作用逐渐减小,晶界滑移成为变形的主要机制。  相似文献   

2.
研究了用电沉积方法制备的纳米Ni和Ni/SiCp纳米复合材料的超塑特性,在试验温度410℃和450℃,应变速率为8.3×10-4s-1~5×10-2s-1的条件下,纳米Ni和Ni/SiCp纳米复合材料均表现出超塑性.当温度为450℃、应变速率为1.67×10-2s-1时,在Ni/SiCp中获得最大延伸率为836%;在同样的温度下应变速率为1.67×10-3s-1时纳米Ni获得最大延伸率为550%.对超塑性变形后组织的分析表明,晶界滑移是主要变形机制,晶粒长大至亚微米/微米量级后,变形机制是位错协调晶界滑移和位错滑移塑性.  相似文献   

3.
对粗晶LY 12材料进行单轴拉伸 ,在 75 3K ,应变速率为 10 - 1 s- 1 和 10 - 4s- 1 下得到大的破坏延伸率 ,而在应变速率为 10 - 2 s- 1 、10 - 3s- 1 、5× 10 - 4s- 1 时的破坏延伸率较小。断口SEM分析表明 ,高应变速率下 ,晶界上的粘性层很薄 ,在晶粒的相互挤压和转动中很容易细化 ,使材料的超塑性变形能力增强 ;低应变速率下 ,晶界上粘性层厚度增大 ,晶粒被厚的粘性物质包围 ,使晶界滑移更容易进行 ,超塑性变形能力也会增强。处于中间应变速率下 ,晶粒没有足够细化 ,粘性层也不够厚 ,所以超塑性变形能力略低。从力学角度解释断裂机制 ,高应变速率下 ,当晶粒间的正应力大于晶界的结合强度时导致断裂 ,断口表面平齐 ;应变速率较低时 ,晶界面的剪应力大于晶界的剪切强度导致断裂 ,断口有撕裂的齿牙状特征 ,较为粗糙  相似文献   

4.
王轶农  黄志青 《材料导报》2004,18(Z3):230-232
利用扫描电镜(SEM)和超塑性拉伸实验对一次热挤压加工成型的AZ61镁合金薄板(晶粒尺寸~12μm)超塑性变形特征进行了研究.结果显示,在最佳的变形温度(623K)和应变速率(1×10-4s-1)条件下,可获得的最大的超塑性形变量为920%.在523~673 K实验温度和1×10-2~1×10-5s-1应变速率范围内,材料的应变速率敏感指数(m值)随实验温度升高和应变速率的降低而增加.较高的m值(0.42~0.46)对应于晶界滑动机制(GBS),而较低的m值(0.22~0.25)则对应于位错滑移机制.变形温度和应变速率是影响超塑性变形量和变量机制的主要因素.  相似文献   

5.
在700℃-850℃的温度范围内对Ti-6%Al-4%V(质量分数)合金板材进行超塑性拉伸试验,研究了应变速率为3×10-4-5×10-38-1条件下的拉伸变形行为.结果表明:Ti6A14V合金在空气中表现出良好的低温超塑性变形能力.在800℃初始应变速率ε=5×10-4s-1条件下,延伸率达到536%.在较低的700℃下变形(ε=5×10-4s-1),延伸率仍然超过了300%.在整个变形温度区间内,应变速率敏感性指数m均为0.3左右,最大值为0.63.在850℃变形激活能与晶界自扩散激活能十分相近,表明晶界扩散控制的晶界滑动是超塑性变形的主要机制.在700-750℃,变形激活能远大于晶界自扩散激活能,位错运动是激活能升高的原因.在800℃变形的激活能介于两者之间,表明随着温度的降低变形机制逐渐发生改变.  相似文献   

6.
通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10~(-5)~3.3×10~(-1)s~(-1)时的超塑性拉伸行为和变形机制。结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10~(-4)s~(-1)),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀。在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10~(-4)s~(-1)时取得极大值373%,峰值应力为31.45MPa。TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶。  相似文献   

7.
本文研究了 Mg—5.26Zn—0.45Zr 合金的力学和显微组织参数对超塑变形的影响。合金在最佳变形条件(300℃,ε=1.67×10~3S~(-1))变形,获得最高延伸率680%,流动应力1.79MN/m~2,应变速率敏感性(m)为0.49。结果表明,为了获得最佳超塑性,应控制微细晶粒尺寸,晶粒的等轴比(dl/dt)和微细亚稳的第二相对晶界的钉扎。合金在高应变速率的变形中通过动态再结晶可获得更细的晶粒尺寸,其断裂时总延伸率在135%左右。  相似文献   

8.
SiCP/ Ni 纳米复合材料的超塑性   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了SiCP / Ni 纳米复合材料的超塑性。SiCP / Ni 采用脉冲电沉积方法获得。拉伸实验温度为410 ℃和450 ℃, 应变速率范围为8.3 ×10 -4~ 5 ×10 -2 s -1 。温度为450 ℃、应变速率为1.67 ×10 -2 s-1时, 获得的最大延伸率为836 %。采用SEM、TEM 分析了沉积态材料的表面形貌、断口形貌及变形后的组织, 并对变形机理进行了探讨。通过SiC 颗粒稳定基体组织有利于实现材料的超塑性, 低空洞体积分数有助于获得大延伸率。晶粒长大到微米尺度时, 变形机制主要是位错协调的晶界滑移和位错滑移塑性。   相似文献   

9.
轧制AZ91镁合金超塑性研究   总被引:13,自引:0,他引:13  
研究了轧制态AZ91镁合金在实验温度为350℃-425℃(0.67Tm-0.76Tm)以及应变速率为10^-3s^-1-10^0s^-1下的超塑性变形能力及其特征。实验发现,轧制态AZ91镁合金在350℃(0.67Tm)以及应变速率为10^-3s^-1时获得最大延伸率455.05%,应变速率敏感系数达到0.64。通过分析表明,高应变速率下的超塑性变形过程中主要的变形机制为晶界滑移机制,但其主要的协调机制则是孔洞扩散聚集机制。  相似文献   

10.
韩松  曾嵩  嵇文清  朱荣 《材料导报》2012,26(12):36-38,45
通过对Mg-12Gd-3Y-0.5Zr合金进行单向拉伸试验,检验晶粒尺寸、温度和应变率对合金力学性能的影响。通过退火处理可以获得不同晶粒尺寸((9.63±0.69)~(94.24±2.41)μm)的试样,拉伸温度分别为20℃、-25℃和-50℃。当温度足够低时,塑性变形由滑移主导的变形方式向孪生主导过渡;同样的情况可在晶粒尺寸变大时发生。变形机制的转变导致Hall-Petch关系中斜率的变化。采用Zener-Hollomon参量来描述温度、应变率对孪生的综合影响。实验结果表明,随着Z参量的变大,孪生发生率增大;当Z值足够大时,变形机制发生转变。  相似文献   

11.
ZK60镁合金高温动态再结晶行为的研究   总被引:1,自引:1,他引:0  
采用Gleeble-1500热模拟试验机进行压缩实验,研究了ZK60镁合金在变形温度为473~723K、应变速率为0.001~1s~(-1)范围内变形过程中的组织演变.分析了变形程度、变形温度、变形速率对其动态再结晶行为的影响,探讨了其动态再结晶的形核机制.结果表明:ZK60合金高温塑性变形时的主要软化机制为动态再结晶,变形温度623K,应变量超过0.24时,在原晶界处出现大量的动态再结晶晶粒,并形成易延展的剪切区.变形温度是影响ZK60合金动态再结晶晶粒尺寸的主要因素,变形温度高于623K时,动态再结晶晶粒超过25μm.ZK60合金动态再结晶晶核在晶界弓弯处形成,随着应变量增加,出现亚晶界合并长大,长条状亚晶快速长大以及在剪切带变形区形核等.  相似文献   

12.
SiCw/MB15镁基复合材料超塑性变形空洞行为   总被引:1,自引:1,他引:0  
用金相显微镜、扫描电镜对SiCw/MB15镁基复合材料在340℃,应变速率为1 67×10-2s-1变形条件下超塑性变形过程中空洞的演化规律进行了研究,并对空洞体积分数与延伸率的关系进行了测定.结果表明:在SiCw/MB15镁基复合材料超塑性拉伸过程中,当延伸率达到50%时,在三叉晶界处开始形成三角形空洞;空洞的长大在变形初期由扩散控制,逐渐发展成球形;当延伸率超过100%时,空洞长大主要由基体塑性变形控制,试样中沿拉伸方向出现空洞链;随着延伸率的增加,空洞链逐渐相互连接,最终导致试样断裂.  相似文献   

13.
异步轧制AZ31镁合金板材的超塑性工艺及变形机制   总被引:1,自引:0,他引:1  
经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。  相似文献   

14.
采用光学显微镜、扫描电镜、电子背散射衍射以及高温拉伸实验研究了工业化制备的5A90铝锂合金超塑性板材变形过程中的组织演变及变形机理。结果表明:在高温拉伸前对板材进行450℃/30min再结晶退火后,在温度为475℃、应变速率为8×10-4s-1的适宜超塑性变形条件下,可使伸长率由原始状态的480%提高至880%。整个超塑性变形过程展现出不同的变形机制:初始阶段(ε≤0.59),板材以形变组织为主,晶粒取向差逐渐增大,位错运动为该阶段的主要变形机制。当真应变达到0.59时,动态再结晶开始发生,晶粒取向差继续增大,晶界滑动开始启动。当真应变大于1.55时,晶粒继续长大,但长大幅度不大且保持等轴状,该阶段变形机制以晶界滑动为主。  相似文献   

15.
用超塑性拉伸试验方法,研究了加入晶粒化剂Zr的冷变形Cu-22.67%Zn-4.59%al形状记忆合金的短暂超塑性变形。在600℃,以初始应变速率ε=5.55×10^-4s^-1进行拉伸试验可获得优良的超塑性性能,延伸率δ460%。超塑性变形过程中激活能为74.4KJ/mol,与铜沿晶自扩散激活能值接近,从而认为该合的超塑性变形机制为晶界的滑移和迁移过程,这上结论与金相观察及断口分析相一致。  相似文献   

16.
在700℃-850℃的温度范围内对Ti-6%Al-4%V(质量分数)合金板材进行超塑性拉伸试验,研究了应变速率为3×10^-4-5×10^-3s^-1条件下的拉伸变形行为.结果表明:Ti6Al4V合金在空气中表现出良好的低温超塑性变形能力.在800℃初始应变速率ε=5×10^-4s^-1条件下,延伸率达到536%.在较低的700℃下变形(ε=5×10^-4s^-1),延伸率仍然超过了300%.在整个变形温度区间内,应变速率敏感性指数m均为0.3左右,最大值为0.63、在850℃变形激活能与晶界自扩散激活能十分相近,表明晶界扩散控制的品界滑动是超塑性变形的主要机制.在700-750℃,变形激活能远大于晶界自扩散激活能,位错运动是激活能升高的原因.在800℃变形的激活能介于两者之间,表明随着温度的降低变形机制逐渐发生改变.  相似文献   

17.
本文利用透射电镜观察Mg—5Zn—0.6Zr舍金的薄膜发现,经超塑性变形后,在晶界附近有明显的位错滑移和孪生产生,在个别晶界上有晶界迁移现象,在大部分晶粒内部发生动态再结晶。作者认为,位错滑移是晶界滑动的主要协调机制。孪生是位错滑移协调的辅助机制。晶界迁移可间接起到协调变形的作用。晶界迁移与晶界滑动配合有助于保持变形中晶粒间的连续性。动态再结晶是超塑性变形中的伴生现象。  相似文献   

18.
用超塑性拉伸试验方法,研究了加入晶粒细化剂Zr的冷变形Cu-22.67%Zn-4.59%Al形状记亿合金的短暂超塑性变形.在600℃,以初始应变速率ε=5.55×10-4s-1进行拉伸试验可获得优良的超塑性性能,延伸率δ=460%.超塑性变形过程中激活能为74.4KJ/mol,与铜沿晶自扩散激活能值接近.从而认为该合金的超塑性变形机制为晶界的滑移和迁移过程,这一结论与金相观察及断口分析相一致  相似文献   

19.
在晶粒尺度采用晶体塑性有限元模拟极薄带材轧制成形过程,对优化和改进材料模型以及探究极薄带材塑性变形机制具有重要作用.箔材轧制成形性能主要依赖材料的微观结构(晶界、滑移系、取向).采用退火态的单层晶铜箔为原料,进行箔轧实验和晶体塑性有限元模拟.建立反映晶粒形貌、晶界和取向各向异性的单层晶铜箔晶体塑性有限元模型,分析极薄带轧制成形中单/多滑移系启动状态和应变局部化现象.为准确构建晶体塑性有限元模拟的初始晶粒结构,消除微观组织亚表面的影响,采用垂直晶界即在厚度方向上建立只有一层晶粒的铜箔晶粒模型.结果表明:晶粒各向异性影响单层晶铜箔的轧制变形机制;晶界处的变形和滑移系运动状态完全不同于晶粒其他位置;单层晶轧制变形的滑移状态表现出明显的各向异性,出现局部滑移带和应变局部化,随轧制变形量的增大,滑移差异显著增大;晶界两侧局部区域存在滑移和变形的显著差异,这为亚晶和微观裂纹源的形核提供了有利的位置.  相似文献   

20.
本文采用热形变动态再结晶+冷变形后静态再结晶的复合工艺,对两种18%Ni(2.45GPa)马氏体时效钢进行晶粒细化处理,奥氏体平均晶粒直径分别为2.5和5μm。在837℃,拉伸速度为0.1mm/min时,最大延伸率为300%,最大流变应力仅为94MPa。应变速率敏感性指数(m)为0.40,拉伸试样的断裂是由于晶粒长大伴随沿晶界空洞形核、长大、连接的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号