首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Different grain sizes were created in a metastable 17Cr‐7Mn‐7Ni steel by martensite‐to‐austenite reversion at different temperatures using a laser beam. Two fully reverted material states obtained at 990°C and 780°C exhibited average grain sizes of 7.7 and 2.7 μm, respectively. The third microstructure (610°C) consisted of grains at different stages of recrystallization and deformed austenite. A hot‐pressed, coarse‐grained counterpart was studied for reference. The yield and tensile strengths increased with refined grain size, maintaining reasonable elongation except for the heterogeneous microstructure. Total strain‐controlled fatigue tests revealed increasing initial stress amplitudes but decreasing cyclic hardening and fatigue‐induced α′‐martensite formation with decreasing grain size. Fatigue life was slightly improved for the 2.7‐μm grain size. Contrary, the heterogeneous microstructure yielded an inferior lifetime, especially at high strain amplitudes. Examinations of the cyclically deformed microstructure showed that the characteristic deformation band structure was less pronounced in refined grains.  相似文献   

2.
Isothermal compression tests of 300M steel were performed on a Gleeble-1500 thermo-mechanical simulator at deformation temperatures ranging from 1173 to 1373 K, strain rates ranging from 0.1 to 5.0 s?1, and a strain of 0.69. Metadynamic recrystallization and grain growth after complete metadynamic recrystallization were investigated by isothermal compression with different inter-pass times. It was found that the inter-pass time, deformation temperature and strain rate markedly affected the austenite grains size of metadynamic recrystallization. The austenite grain size model and grain growth model of metadynamic recrystallization were determined based on the results of quantitative grain size. A good agreement between the predicted and measured austenite grain size and grain growth of metadynamic recrystallization was obtained, and the present models were effective to predict the austenite grain size and grain growth of metadynamic recrystallization in the isothermal compression of 300M steel.  相似文献   

3.
本文研究了W9Mo~3Cr~4V钢的热变形奥氏体动态再结晶规律。结果表明:由于形变诱发析出碳化物的影响,W9Mo~3Cr~4V钢热变形奥氏体动态再结晶方式与低碳低合金钢的晶界弓出机构和晶界生核机构不同,是通过亚晶合并形成再结晶晶粒的,即亚晶合并机构。当形变速率较低时,可由亚晶粒直接形成再结晶晶粒。形变温度和形变速率对W9Mo~3Cr~4V钢热变形奥氏体动态再结晶影响比较复杂,不能简单地用Z参数来统一描述。  相似文献   

4.
The effect of prior austenite on reversed austenite stability and mechanical properties of Fe‐0.06C‐0.2Si‐5.5Mn‐0.4Cr (wt.%) annealed steels was elucidated. With the decrease of austenitizing temperature from 1250 °C to 980 °C, the prior austenite changed from complete recrystallization to partial recrystallization, and the average austenite size was reduced. The volume fraction of reversed austenite was increased from 26.32 % to 30.25 % because of high density of grain boundaries and dislocations. The martensite transformation temperature of annealed steels was increased from ~115 °C to ~150 °C, and both of thermal and mechanical stability of reversed were reduced. There was no significant different in tensile properties, however, the impact toughness was enhanced from 100 J to 180 J at ?60 °C. The excellent impact toughness in annealed steel (austenitized at 980 °C) was obtained because of higher density of high misorientation grain boundaries, more volume fraction of reversed austenite and reduced segregation at grain boundaries.  相似文献   

5.
This paper presents new data and a summarization of earlier work, especially by the authors, regarding the large strain deformation (generally severe plastic deformation) of pure zirconium, generally at elevated temperatures (300–800 °C range). It appears clear, now, that Zr deforms by classic five-power-law creep. Large strain deformation revealed recovery controlled mechanisms with grain refinement occurring by geometric necessary boundaries and/or the recovery-based mechanism of geometric dynamic recrystallization depending on the amount of grain elongation that occurs. No discontinuous dynamic recrystallization or grain growth was observed in the authors’ tension and rolling studies. The refined ultra-fine grained substructure showed dramatically improved tensile properties over conventionally processed Zr.  相似文献   

6.
The effects of post weld heat treatment (PWHT) and oil quenching on the metallurgical and mechanical properties of the duplex (UNS S31803) welded joints were evaluated at three different temperatures namely 1080, 1150 and 1200 °C. The microstructural variation, austenite/ferrite phase changes, grain size measurements and microhardness aspects of the welded joint were observed. The fraction of ferrite and austenite phases was equivalent at 1150 °C. Nickel element was more efficient in controlling the twin phase balance. Finer grain structure was achieved at 1150 °C due to recrystallization effect. Twin phase presence and absence of precipitates were confirmed through XRD and TEM which followed Kurdjumov–Sachs relationship. At a heating pressure of 40 MPa, heating time of 4 s, an upsetting pressure of 80 MPa, and an upsetting time of 2 s during a PWHT at 1150 °C, a 50/50 balance between the duplex phases, fine grains, and increased microhardness were obtained.  相似文献   

7.
Austenite grain growth kinetics in a steel containing 0.4% C, 1.8% Cr with different nitrogen contents (in the range 0.0038–0.0412%) and a micralloying addition of 0.078% V were investigated. The investigations were carried out in an austenitising temperature range of 840–1200 °C for 30 min. The results of investigations showed that N promotes the grain growth of austenite. The microalloying addition of vanadium protects the austenite grain growth because of carbonitride V(C,N) precipitation and the grain boundary pinning effect of undissolved particles of V(C,N). Using a thermodynamic model, the carbonitride V(C,N) content, undissolved at the austenitising temperature was calculated. At temperatures when a coarsening and dissolution of carbonitride occurs, the austenite grains start to growth. The effect of nitrogen on the type of chord length distribution of austenite grains was analysed.  相似文献   

8.
To study the hot deformation behavior and microstructural evolution of a new modified 310 austenitic steel, hot compression tests were conducted at the temperature range from 800 to 1100 °C with strain rate of 0.1–10 s−1 and strain of 30–70% using Gleeble 3500 thermal–mechanical simulator. The results showed that the serrated flow curves were caused by the competitive interaction between solute atoms and mobile dislocations. There were some coarsened precipitates on the high angle grain boundaries (HAGBs), which facilitated the nucleation of dynamic recrystallization grains. But these precipitates inhibited the growth of the recrystallization grains, and changed the deformation texture in the matrix. Low angle grain boundaries (LAGBs) decreased, while twin GBs and random HAGBs and increased as dynamic recrystallization occurred. Dynamic recrystallization occurred more readily at evaluated temperature or high strain rate. The true stress decreased with the reduction of LAGBs percent. The internal connections between mechanics and microstructures were also discussed.  相似文献   

9.
Abstract

An oxidation method has been employed to reveal prior austenite grain boundaries in C–Mn and interstitial free (IF) steels. The ability of this technique to reveal prior austenite grain boundaries is assessed by comparing its results with those of an etching method applied on the C–Mn steel. Optimum conditions were established by trial and error. The conditions varied with different steels and with heat treatment temperature. In the IF steel rapid grain growth at high temperatures in the ferrite range made a significant contribution to the prevention of grain refinement through transformation. Attempts to obtain the smallest prior austenite grain size in the IF steel to assess the ability of the oxidation technique to reveal fine austenite grains led to an average austenite grain size of 80 μm in warm rolled samples after the shortest holding time at 950°C.

MST/3203  相似文献   

10.
Reheat treatments for two HSLA steels, a forged Al-Nb-containing steel (Steel-1) and an as-rolled Nb-containing steel (Steel-2), were carried out for one to three hours at temperatures between 1090 and 1250°C which were selected by the precipitates’ dissolution temperatures predicted by Thermo-Calc and DICTRA. Steel-1 contains continuous segregation bands with segregation spacing of 65?±?10?µm, whereas Steel-2 contains discontinuous segregation bands with spacing of 35?±?10?µm. Uniform grain size distributions occurred in Steel-1 for all reheat temperatures whereas abnormally large grains were observed in Steel-2 when reheating at 1090°C. A mechanism for grain size development in materials with continuous and discontinuous segregation bands based on austenite nucleation and growth and precipitate pinning in the segregation band is proposed.  相似文献   

11.
Metadynamic recrystallization has been investigated in three plain carbon steels (ENIA, EN2 and EN24) through the use of hot interrupted compression tests on a wedge plastometer. Holding time was 0.5 s between passes. Strain rates of 0.05 and 0.12/s and small strain increments of 3, 5 and 7% were employed. Test temperatures were varied between 800 and 1100°C. Various incremental and continuous stress strain curves were highlighted at different temperatures and strain rates for 3 steels, ENIA, EN2 and EN24, resulting in varying flow stresses and strains. Highest peak stress was 180 MPa for EN24 at peak strain of 0.25 and 900°C, with a strain rate 0.12/s. Peak strain values for all steels at 1100°C was 0.133 at a strain rate of 0.05/s and 0.15 at a strain rate of 0.12/s. Strain accumulation resulted in dynamic and metadynamic recrystallization with refinement to about 15 μm for dynamic and 22 μm for metadynamic recrystallization. Fractional softening,X, decreased from 0.27 to 0.12 as recrystallization times in metadynamic recrystallization increased from 0.9 s to 1.5 s at 1100°C. Time for 50% metadynamic recrystallization was also reduced as temperature increased. For ENIA, a drop from 10000 s to 20 s, as temperature increased from 800 to 1100°C was observed. For EN24 and EN2 steels, a drop from 4000 s to 6 s for similar temperature rise was observed. Metadynamic recrystallization (at strains higher than critical strain) is observed to be a strong function of strain rate and a very weak function of temperature and strain. It significantly refined the austenite grain size prior to transformation.  相似文献   

12.
Abstract

Hot ductility, measured by reduction in area, has been determined over the temperature range 550–950°C for a series of plain C–Mn steels having the same base composition except for the carbon content, which was in the range 0·04–0·65 wt-%. A ductility trough was obtained for all the steels and minimum ductility values were similar. Raising the carbon content from 0·04 to 0·28 wt–% caused the ductility trough to move to lower temperatures and this was in agreement with the observed changes in transformation temperature. Tensile fracture at the minimum ductility temperature was along thin films of ferrite which formed round the austenite grains – generally by deformation–induced transformation. The softer ferrite allowed strain concentration to cause ductile voiding at the MnS inclusions, and the voids eventually linked up to give intergranular failure. Raising the carbon content above the 0·28% level caused a change in the fracture mode. Instead of the ductility troughs moving to lower temperatures, a shift of over 100 K to higher temperatures was observed. Intergranular failure now occurred in the austenite as a result of grain boundary sliding. It is suggested that this change in fracture mode is caused by carbon increasing the activation energy, and hence the critical strain required for dynamic recrystallization, so favouring the linking of cracks formed by grain boundary sliding.

MST/366  相似文献   

13.
In this paper, the microstructure and hardness evolutions of commercially pure Cu subjected to high energy mechanical milling and subsequent annealing treatments in the temperature range of 400–700 °C are investigated. The results demonstrated the simultaneous occurrence of recovery, recrystallization, and grain growth during annealing of the nanocrystalline Cu. The volume fraction of the recrystallized grains estimated using the grain orientation spread exhibits lower values as a result of its dynamic recovery at higher temperatures. The normal grain growth in the range of 400–600 °C and significant abnormal grain growth at higher temperatures are observed during annealing. As a result of the abnormal grain growth, the microhardness value rapidly decreases for the sample annealed at 700 °C. An analysis of the grain growth kinetics using the parabolic equation in the temperature range of 400–600 °C reveals a time exponent of n  2.7 and an activation energy of 72.93 kJ/mol. The calculated activation energy for the grain growth in the nanocrystalline Cu is slightly less than the activation energy required for the lattice diffusion. This low activation energy results from the high microstrain as well as the Zener-pinning mechanism that arises from the finely dispersed impurities drag effect.  相似文献   

14.
High strain isothermal compression tests at temperatures of 700–1200°C and strain rates of 0.1–50?s?1 were performed in a Gleeble-3800 thermal simulator to investigate the hot deformation behaviour of a high-alloy Cr–Co–Mo–Ni gear steel, and the constitution equation and hot processing map were established based on these experiments. The results show that the flow stress can be described by the constitutive equation in hyperbolic sine function, and the optimum hot working regions are at the temperature of 1000–1100°C and strain rate of 0.3–1.0?s?1. Optical microscopy observations of austenite grains indicate that dynamic recrystallisation occurs when the deformation temperature is over 900°C. The forging was successfully produced on the basis of the above-described researches.  相似文献   

15.
The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant.  相似文献   

16.
Metastable austenitic stainless steel of type AISI 304L was cold rolled to 90% with and without inter-pass cooling. Inter-pass cooling produced 89% of strain-induced martensite whereas no inter-pass cooling resulted in the formation of 43% of martensite in the austenite matrix. The cold-rolled specimens were annealed at various temperatures in the range of 750–1000 °C. The microstructures of the cold-rolled and annealed specimens were studied by the electron microscope. The grain size and low angle boundaries were determined from the orientation maps recorded by the scanning electron microscope-based electron backscattered diffraction technique. The observed microstructural changes were correlated with the reversion mechanism of martensite to austenite and volume fraction of martensite. It was noted that large volume fractions of martensite at low annealing temperatures, below 900 °C, were most suitable for the formation of fine grains. On the contrary, reversion of small volume fractions of martensite at critical annealing temperature of 950 °C resulted in grain refinement.  相似文献   

17.
The present work investigates the interactions between ferrite recrystallization and austenite formation in dual-phase steels by experiments performed at high heating rate (100 °C/s). It was shown that both ferrite recrystallization and austenite formation are strongly coupled and interdependent. The kinetics of ferrite recrystallization is strongly affected by the formation of austenite and can be even inhibited in some cases. The microstructure is more heterogeneous and anisotropic when both the austenite formation and the ferrite recrystallization overlap. It was highlighted that the degree of anisotropy depends on the volume fraction of austenite at a given temperature. Furthermore, an unusual behavior for austenite growth was highlighted. It is characterized by a much higher volume fraction than those obtained under OrthoEquilibrium and ParaEquilibrium. The results, especially those at 715 °C close to the eutectoid plateau, at which the driving force for austenite growth is classically low, suggest a diffusionless transformation for austenite.  相似文献   

18.
During torsional deformation in the temperature range BOO-1200°C, and strain rate range 0.1-7.0 s-1, Waspaloy exhibited high strain hardening and low ductility up to 950°C and rapidly rising ductility above that, as a result of undergoing dynamic recrystallization. Above 950°C, the strain rate was related to the stress exponentially and to the temperature through an Arrhenius relationship with an activation energy of 410 kJ/mole. Microstructural studies showed that dynamically recrystallized grains formed, containing a substructure which persisted without change in dimension during the steady-state region. The dynamic recrystallization resulted in a movement of the grain boundaries away from the cracks and pores, thus slowing down their growth and providing high ductility.  相似文献   

19.
利用Gleeble-3500热/力模拟试验机对Cr8支承辊用钢在应变速率0.01~1s-1、变形温度950~1 200℃条件下进行了热压缩变形试验,研究了其热变形力学行为和再结晶规律,并对该钢热变形后的显微组织及物相变化进行了分析。结果表明:在应变速率较低为0.01s-1,当变形温度低于1 050℃时,Cr8钢热变形后的组织主要为动态回复型,当变形温度高于1 100℃时,热变形后的组织为动态再结晶型,且随着变形温度的升高,动态再结晶晶粒逐渐长大;当应变速率增加到0.1s-1时,热变形后的组织在温度低于1 050℃时为动态回复型,在温度高于1 100℃时为动态再结晶型;当应变速率增加到1s-1时,变形温度高于1 050℃时,热变形后的组织即发生了明显的再结晶,奥氏体晶粒大部分已长成为等轴的再结晶晶粒;Cr8钢热变形后的物相主要为α-Fe和γ-Fe,显微组织主要为马氏体和残余奥氏体。  相似文献   

20.
Mg–Gd–Y–Zr alloys are among recently developed Mg alloys having superior mechanical properties at elevated temperatures. Dynamic recrystallization (DRX) and rare earth-rich particles play important roles in enhancing the high-temperature strength of these alloys. Accordingly, the microstructural evolution of a fine-grained extruded Mg–5Gd–4Y–0.4Zr alloy was investigated after hot shear deformation in the temperature range of 350–450 °C using the shear punch testing (SPT) method. The results reveal the occurrence of partial dynamic recrystallization at the grain boundaries at 350 °C while the fraction of DRX grains increases with increasing deformation temperature. A fully recrystallized microstructure was achieved after SPT at 450 °C. The Gd-rich and Y-rich cuboid particles, having typical sizes in the range of ~50 nm to ~3 μm, show excellent stability and compatibility after hot shear deformation, and these particles enhance the high-temperature strength during hot deformation at elevated temperatures. The textural evolution, examined using electron backscattered diffraction, revealed a non-fibrous basal DRX texture after SPT which is different from the conventional deformation texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号