首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of novel pyridinium cationic gemini amphiphiles, 3,3′-(carbonyldiimino)bis (1-n-alkylpyridinium) dibromides, having octyl, decyl, dodecyl, tetradecyl alkyl chains were synthesized. The surface properties and aggregation behavior in aqueous solution were evaluated by surface tension, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurement. The adsorption at the air/solution interface of all the compounds were quantitative described using the Frumkin model, and the effect of alkyl chain length on surface activity and aggregate behavior was analyzed. It was found that all the gemini amphiphiles possess surface activity and low critical micellization concentration (CMC) values. The values of log CMC depended linearly on the carbon number of the alkyl chains, but the surface tension at the CMC (γcmc) showed a minimum for the compound with dodecyl chains. Combinations of DLS and TEM observations showed the existence of vesicles with a broad size distribution in aqueous solution. Meanwhile, vesicles formed below the CMC could be a possible reason for the observed deviation of surface tension curves from the Frumkin model.  相似文献   

2.
A series of novel cationic gemini surfactants, C n H 2n+1 N+(CH3)2CH2CHOHCHOHCH2N+(CH3)2C n H 2n+1 ·2Br, have been synthesized, and their surface properties were investigated in water, 0.1 N NaCl, and 0.1 N NaBr at 25°C. From surface tension-log molar concentration plots, the pC20, critical micelle concentration (CMC), and γCMC values have been determined, and the area/molecule at the aqueous solution/air interface was calculated. When the number of carbon atoms in the alkyl (hydrophobic) chains is above a certain number, which depends upon the molecular environment, the surface activity of the compounds is less than expected. This appears to be due to formation of small, soluble aggregates below the CMC. Equilibrium constants calculated for this aggregation indicate that a series of oligomers are formed.  相似文献   

3.
A series of novel dissymmetric gemini surfactants, [C m H2m+1COOC2H4(CH3)2N(CH2)3N(CH3)2C2H4OOCC n H2n+1]Br2 was synthesized and symbolized as m-sn. The Krafft temperatures and surface tension curves of the dissymmetric gemini surfactants were measured using an electrical conductivity method and a drop volume method. The low Krafft temperatures indicate very good solubility of these esterquat gemini surfactants. With the increasing numbers of carbon atoms in the hydrophobic alkyl chain, the critical micelle concentration (CMC) and the minimum surface area (A min) decrease, and the efficiency of surface tension reduction (pc20) increases. With the same numbers of carbon atoms in the hydrophobic alkyl chain, the dissymmetric gemini surfactant has a lower CMC and a smaller A min than the corresponding symmetric gemini surfactant due to the enhanced hydrophobic interactions.  相似文献   

4.
Four anionic gemini surfactants of the sulfate type C12CnC12, where n is the spacer chain length (n = 3, 4, 6, and 10) were synthesized. The structures of these surfactants were confirmed by FT‐IR, 1H NMR, ESI mass spectra (ESI‐MS), and elemental analysis. The surface‐active properties of these compounds were investigated by means of surface tension, electrical conductivity, and fluorescence measurements. Premicellar aggregations were found for the four gemini surfactants, as revealed by the conductivity measurement. The formation of premicellar aggregates may account for the discrepancy between the critical micelle concentration (cmc) obtained by the surface tension and conductivity measurement. The cmc values of these gemini surfactants were much lower than that of sodium dodecylsulfate (SDS) and decreased monotonously with the increase of spacer chain length from 3 to 10. The effect of spacer chain length on the performance properties like foaming, emulsion stability, and lime soap dispersing ability were also studied and discussed. Practical applications : Alkyl sulfate surfactants are one of the most widely used surfactants. The new alkyl sulfate gemini surfactants synthesized in our study are more surface‐active than sodium dodecylsulfate. These gemini surfactants possess low critical micelle concentrations, high emulsion stability, and excellent lime soap dispersing ability. They have potential applications in the fields of cosmetics, detergents, etc.  相似文献   

5.
A series of alkylbetaine zwitterionic gemini surfactants, 1,2-bis[N-methyl-N-carboxymethyl-alkyl-ammonium]ethane (C n Ab, n = 8, 10, 12, or 14), were synthesized by alkylation of N,N′-dimethylethylenediamine with an alkyl bromide, followed by reaction with sodium 2-bromoacetate. Their solution properties were characterized by surface tension, steady-state fluorescence, and rheological measurements. Surface-tension measurements showed C n Ab had lower critical micelle concentration (CMC) and higher efficiency in lowering the surface tension than their corresponding monomeric surfactants. The logCMC of C n Ab decreased linearly with increasing chain lengths up to 12. Viscosity measurements showed only C10Ab could enhance aqueous solution viscosity at high concentrations.  相似文献   

6.
Micellization of four cationic quaternary ammonium gemini surfactants, having a diethyl ether or hexyl spacer with the alkyl chain lengths of 12 and 16 carbon atoms, was studied using isothermal titration microcalorimetry (ITC) and electrical conductivity measurements in the temperature range from 298.15 to 313.15 K. In this temperature range, where surfactants are normally applied, the temperature almost does not influence the critical micelle concentration (CMC) and the degree of micelle ionization (α) values of the gemini surfactants, and the replacement of a hexyl spacer by a diethyl ether spacer leads to a slight decrease in the CMC and α values. However, as the alkyl chain length increases from 12 to 16 carbon atoms, the CMC values significantly decrease from 0.99–1.19 mM to 0.020–0.057 mM. In particular, the enthalpy of micellization (ΔHmic ) and the associated thermodynamic parameters show obvious changes with varying temperature and molecular structure. ΔHmic becomes much more exothermic at higher temperature or for the surfactants with a more hydrophilic spacer. Moreover, the heat capacity change of micellization (ΔC P, mic ) is less exothermic for the surfactants with a more hydrophilic spacer or a longer alkyl chain. The enthalpy–entropy compensation data show that the surfactants with longer alkyl chains have a more stable micellar structure.  相似文献   

7.
A series of novel cationic gemini surfactants [CnH2n+1–O–CH2–CH(OH)–CH2–N+(CH3)2–(CH2)2]2·2Br? [ 3a (n = 12), 3b (n = 14) and 3c (n = 16)] having a 2‐hydroxy‐1,3‐oxypropylene group [?CH2–CH(OH)–CH2–O–] in the hydrophobic chain have been synthesized and characterized. Their water solubility, surface activity, foaming properties, and antibacterial activity have been examined. The critical micelle concentration (CMC) values of the novel cationic gemini surfactants are one to two orders of magnitude smaller than those of the corresponding monomeric surfactants. Furthermore, the novel cationic gemini surfactants have better water solubility and surface activity than the comparable [CnH2n+1–N+(CH3)2–(CH2)2]2·2Br? (n‐4‐n) geminis. The novel cationic gemini surfactants 3a and 3b also exhibit good foaming properties and show good antibacterial and antifungal activities.  相似文献   

8.
A series of novel dissymmetric gemini cationics surfactants was synthesized by three-step reactions. The dissymmetric gemini surfactants contain a dodecanoic acid dimethylethylamine ester as the constant cationic part on one side of the hydroxypropyl center and a similar other cationic part, but with a different acid length (from octanoic to palmitic), on the other side. The critical micelle concentration (CMC) and the effectiveness of surface tension reduction (γ CMC) were determined. The surface tension measurements of dissymmetric gemini surfactants showed good water solubility, and low CMC had great efficiency in lowering the surface tension and a strong adsorption at the air/water interface. The CMC was observed to increase initially with the increase of the ester bond alkyl group. They also showed good foaming properties and wetting capabilites.  相似文献   

9.
Tuning physicochemical properties of aqueous surfactant solutions comprised of normal or reverse micelles by external additives is of utmost importance due to the enormous application potential of surfactant‐based systems. Unusual and interesting properties of environmentally benign ionic liquids (IL) make them suitable candidates for this purpose. To understand and establish the role of IL in modifying properties of aqueous gemini surfactants, we studied the effect of the IL, 1‐hexyl‐3‐methylimidazolium bromide ([Hmim][Br]) and 1‐octyl‐3‐methylimidazolium bromide ([Omim][Br]) on the properties of the aqueous cationic gemini surfactant 1,6‐hexanediyl‐α,ω‐bis(dimethyltetradecyl)ammonium bromide (14‐6‐14,2Br?). The behavioral changes were investigated by measuring the critical micelle concentration (CMC) using electrical conductance, surface tension, dye solubilization and fluorescence probe measurements at 298.15 K. It was observed that the CMC of 14‐6‐14,2Br? gemini surfactant decreases with addition of IL, thus favoring the micellization process. An increase in micellar size was observed at lower IL concentration using dynamic light scattering, with a decrease in aggregation number (Nagg) determined from fluorescence probe quenching measurements. It is noteworthy that the extent of modulation of the micellar properties is different for both the IL due to their structural differences. IL behave like electrolytes at lower concentrations and cosurfactants at higher concentrations and form mixed micelles with the cationic gemini surfactant showing an increase in Nagg.  相似文献   

10.
In this study, a series of cationic silicone surfactants SiQCnCl containing ester groups and double long-chain alkyls (n = 9, 11, 13, 15, and 17) were synthesized by microwave irradiation and characterized using infrared Fourier transform (FTIR), 1H nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA). Surface activity and adsorption of these surfactants were investigated by measuring the equilibrium surface tension. The critical micelle concentration (CMC) decreased with increasing alkyl length of SiQCnCl at 25 °C and so did the corresponding surface tension at the CMC (γCMC ). The aggregation behavior in aqueous solutions was also investigated systemically through transmission electron microscopy (TEM) and dynamic light scattering (DLS). Spherical or ellipsoidal-like aggregates with diameters ranging from 300 to 900 nm were observed. It is also shown that the cationic silicone surfactants exhibit certain antibacterial properties against Staphylococcus aureus but slightly poor to Escherichia coli. The morphological structure of SiQC15Cl-treated cotton fabrics was observed using scanning electron microscopy (SEM), which showed that the surface became neat and smooth. What is more, the finished cotton fabrics maintained some antibacterial properties with improved softness, which may provide a more comfortable and healthy lifestyle. This work may also be helpful to the design and application of functional cationic silicone surfactants.  相似文献   

11.
New gemini anionic surfactants were prepared from sodium salts of monoalkyl sulfosuccinate esters of ethylene glycol having variably long tails (C12, C16, C18) and dichloroethane. The chemical structures of the prepared surfactants were confirmed using different spectroscopic techniques. The surfaces tension values of the synthesized surfactants were measured at 25 °C individually or mixing at different molar fractions with ethoxylated alkylphenol. In all cases, mixed micellar aggregates were formed and critical micellar concentrations of binary mixtures containing different mole fractions of the surfactants were measured. The micellization processes of the individual and mixed surfactants were investigated. The effect of different alkyl chains of gemini anionic surfactants on properties of binary systems and molar ratio in the mixed aggregates were deduced. The critical micelle concentration of mixed surfactants shifted to lower values compared to those of the single surfactants. Effectiveness values increased with decreases in the mole fraction of gemini anionic surfactants. The negative values of interaction parameter (β) increased with increases in the chain length of anionic surfactants. The activity coefficient (f 1, f 2) and total minimum surface area of mixed solution were calculated. Also, the gemini anionic surfactants prepared have moderate antimicrobial activity towards bacteria and not active towards fungi.  相似文献   

12.
A series of cationic gemini surfactants containing different spacer length were synthesized and analyzed structurally. It was shown that the surface tension (σ) and critical micelle concentration (CMC), which had a maximum for the n-C4H8 spacer depended on the spacer length. The foaming ability and foam stability are high for the gemini surfactants with short spacers (C2H4 to n-C4H8), while longer spacers lead to a distinct decrease of these foam parameters. Foaming properties are discussed in terms of configuration and conformation of a surfactant molecule and in relation to micellization state kinetic.  相似文献   

13.
A series of cationic gemini surfactants containing two dimethylalkylammonium chains linked by ethylene glycol bisacetyl spacers were synthesized [Gm‐AnA‐m, G = gemini surfactant, m = 12 (–C12H25), 14 (–C14H29), or 16 (–C16H33), A = acetyl, and n = 2, 3, or 4 is the number of ethylene glycol units in the spacers]. Because of the inductive effect of the oxygen atom in the spacer, acylation can take place using chloroacetyl chloride instead of bromoacetyl bromide which helps to limit the use of environmentally harmful reagents. Critical micelle concentrations were determined using conductivity measurements. The antibacterial activities of the surfactants against Gram‐positive bacterium Staphylococcus aureus and Gram‐negative bacterium Escherichia coli were evaluated from the minimum inhibitory concentration (MIC), minimum bacterial concentration, a time–kill study, and the inhibitory zone. Increasing the length of the spacer did not result in an obvious change of antibacterial activity. However, increasing the length of the alkyl chain apparently increased the antibacterial activity against S. aureus but decreased the antibacterial activity against E. coli. The G12‐A2A‐12 surfactant had the lowest CMC of 1.26 mmol L?1 and exhibited the best antibacterial activity with a MIC of 32 μg mL?1 toward S. aureus and 64 μg mL?1 toward E. coli in the presence of 105 CFU of bacteria. This work indicated that these cationic gemini surfactants have potential applications as antibacterial agents and emulsifiers.  相似文献   

14.
A series of anionic gemini surfactants with the same structure except the spacer nature have been studied. Their solution properties were characterized by the equilibrium surface tension and intrinsic fluorescence quenching method. The critical micelle concentrations (CMC), surface tension at cmc, C20, and the micelle aggregation number (N) were obtained. The surface tension measurements indicate that these gemini surfactants have much lower cmc values and great efficiency in lowering the surface tension of water compared with those of conventional monomeric surfactants. Furthermore, the standard free energy of micellization for anionic gemini surfactants was also determined. The results showed that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in aqueous solutions. The surfactant with a hydrophilic, flexible spacer was more readily able to form micelle compared with the surfactant with a hydrophobic, rigid spacer, which leads to a lower CMC value, larger N, more negative free energy of micellization, and a more closely packed micelle structure.  相似文献   

15.
Construction of gemini‐like surfactants using the cationic single‐chain surfactant cetyltrimethylammonium bromide C16H33N(CH3)3Br2 (CTAB) and the anionic dicarboxylic acid sodium salt NaOOC(CH2)n‐2COONa (CnNa2, n = 4, 6, 8, 10, 12) by way of non‐covalent interactions has been investigated by surface tension measurements, hydrogen‐1 nuclear magnetic resonance (1H NMR) spectroscopy and isothermal titration microcalorimetry (ITC). The critical micelle concentrations (cmc) of the CTAB/CnNa2 mixtures are obviously lower than that of CTAB and strongly depend on the mixing ratio. Moreover, the cmc values of the CTAB/CnNa2 mixtures decrease gradually with an increasing methylene chain length of CnNa2, indicating hydrophobic interaction between the hydrocarbon chains of CTAB and CnNa2 facilitates micellization of the mixtures. In particular, the ITC curves and 1H NMR spectra indicate that the binding ratio of CTAB to CnNa2, except C4Na2, is around 2:1, i.e., (CTAB)2CnNa2. Additionally, CTAB/CnNa2 mixtures are soluble in a whole molar ratio and concentration ranges have been studied, even at the electrical neutralization point. Therefore, these results reveal that highly soluble gemini‐like surfactants are conveniently constructed with oppositely‐charged cationic single‐chain surfactants and dicarboxylic acid sodiums. In an attempt at improving the performance of surfactants this work provides guidance for choosing additives that form gemini‐like surfactants via an uncomplicated synthesis.  相似文献   

16.
In this study, the gemini surfactants of the alkanediyl-α-ω-bis(alkyl dimethyl ammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as “m-2-m” (m = 10, 12 and 16) and, on the other hand, with n-C16 alkyl groups and different spacers containing s carbon atoms, referred to as “16-s-16” (s = 2, 6, 10 and Ar (8)) have been synthesized, purified and characterized. The critical micelle concentration (CMC), micelle ionization degree (α) and Gibbs free energy of micellization (∆G mic) of these surfactants and the monomeric cationic surfactants DTAB and CTAB have been determined by means of electric conductivity measurements. In addition, the temperature dependence of the CMC was determined for the 10-2-10 gemini surfactant. The CMCs of the gemini surfactants are found to be much lower than those of the corresponding monomeric surfactants and the effect of the hydrophobic alkyl chain length is more important than that of the spacer. The CMC of 16-s-16 passes through a maximum of (or around) s = 6 and then decreases for s = 10. The presence of a maximum CMC is explained by the contribution of a change of conformation of the surfactant with increasing spacer chain length. The changes of α with s and m are found qualitatively similar to those found for CMC values. The values of ∆G mic are more negative for the dimers than for the monomers and also change with an increasing spacer carbon number, as CMC values do. The thermodynamic parameters of micellization indicate that the micellization of 10-2-10 is enthalpy driven.  相似文献   

17.
Four chiral l-lysine-based gemini surfactants with different spacers were synthesized, namely, disodium (18R,23R)-12,20,21,29-tetraoxo-13,19,22,28-tetraazatetracontane-18,23-dicarboxylate([C12-2-C12]Na2), disodium (18R,25R)-12,20,23,31-tetraoxo-13,19,24,30-tetraazadotetracontane-18,25-dicarboxylate([C12-4-C12]Na2), disodium(18R,27R)-12,20,25,33-tetraoxo-13,19,26,32-tetraazatetratetracontane-18,27-dicarboxylate([C12-6-C12]Na2), disodium(2R,2′R)- 2,2′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl)bis(6-dodecanamidohexanoate) ([C12-T-C12]Na2). The chemical structures of the prepared compounds were confirmed by 1H-NMR, ESI–MS and IR spectra. Further, the critical micelle concentration (CMC) of these surfactants in aqueous solutions was determined by surface tension and conductometry methods at 25 °C. Moreover, the adsorption and micellization behaviors of these surfactants were estimated by pC20, the minimum average area per surfactant molecule (Amin), and standard free energy for micellization and adsorption ( \( \Updelta G_{\text{mic}}^{^\circ } \) and \( \Updelta G_{\text{ads}}^{^\circ } \) ). The results show that the four gemini surfactants have low CMC values and significantly low surface tension. Furthermore, the surfactants show strong adsorption at the air–water interface. The CMC and Amin values of the surfactants were found to be in the order of [C12-2-C12]Na2 < [C12-4-C12]Na2 < [C12-6-C12]Na2 < [C12-T-C12]Na2, which were in agreement with the sequence of \( \Updelta G_{\text{mic}}^{^\circ } \) and \( \Updelta G_{\text{ads}}^{^\circ } \) . The circular dichroism of the surfactants indicated the formation of chiral aggregates above the CMC values.  相似文献   

18.
The cationic surfactants containing aromatic rings and amide bonds, N,N-dimethyl-N-dodecyl-2-pyrimidinylcarbamoylmethyl ammonium chloride ( a ), N,N-dimethyl-N-dodecyl-2-thiazolylcarbamoylmethyl ammonium chloride ( b ), and N,N-dimethyl-N-dodecyl-phenylcarbamoylmethyl ammonium chloride ( c ), were synthesized and characterized. The surface tension and conductivity values were employed to investigate the absorption and micellization behavior of the three cationic surfactants. The results showed that the synthesized surfactants have shown a low critical micelle concentration (CMC) and a high adsorption efficiency (pC20) compared with the traditional cationic surfactant of N,N-dimethyl-N-dodecyl-N-benzyl ammonium chloride ( BAC-12 ). The aromatic rings of the a , b , and c molecular structures were analyzed using the 1H NMR spectra for electrostatic repulsion effects between hydrophilic headgroups. The size distribution of the micelles was derived using dynamic light scattering (DLS) techniques. In addition, the foaming ability of a , b , c , and BAC-12 was investigated and the antimicrobial activity of a , b , c , and BAC-12 against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis was examined. The effects of amide bonds and aromatic rings on the surface properties and antimicrobial activity of a , b , and c were analyzed and compared with BAC-12 of the same alkyl chain length. The synthesized surfactants exhibited a high surface ability and better antibacterial activity compared with BAC-12 .  相似文献   

19.
A series of novel cationic gemini surfactants with rigid amido groups inserted as the spacers, named C 12 ‐PPDA‐C 12 , C 14 ‐PPDA‐C 14 and C 16 ‐PPDA‐C 16 , were synthesized by a two‐step reaction with dimethyl terephthalate, N,N‐dimethyl propylene diamine and alkyl bromide as raw materials. The chemical structures of the prepared compounds were confirmed by IR, 1H and 13C NMR and element analysis. Surface activity properties of the synthesized compounds were investigated by surface tension, electrical conductivity and fluorescence. Increasing the number of carbon atoms in the hydrophobic alkyl chain, decreased the critical micelle concentration (CMC), surface tension at the CMC and the minimum surface area. Other relevant properties including foaming ability and emulsion stability were investigated. The results indicated that the synthesized gemini surfactants possess good surface properties, emulsifying properties and steady foam properties.  相似文献   

20.
The surface properties of binary mixtures of anionic sodium methyl ester ??-sulfo alkylate (C m MES) and cationic alkyl trimethylammonium bromide (C n TAB) of different carbon chain length have been studied in the present work. The critical micelle concentration (CMC) that was obtained from the plots of surface tension (??) versus concentration showed that mixed surfactants have CMC values that were about 10 times lower than their single components. The large negative values for both interaction parameters suggest the existence of strong synergism between the oppositely charged surfactant molecules. The effect of hydrocarbon chain length of either surfactant was also compared and results showed that the effect of cationic surfactant chain length dominated that of the anionic surfactants. It was also discovered that certain mixed surfactant combinations behave differently from the expected trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号