首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Théobald  D Kern  R Giegé 《Biochimie》1988,70(2):205-213
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
G S Rao  P F Cook  B G Harris 《Biochemistry》1991,30(41):9998-10004
Treatment of the Ascaris suum phosphofructokinase (PFK) with 2',3'-dialdehyde ATP (oATP) results in an enzyme form that is inactive. The conformational integrity of the active site, however, is preserved, suggesting that oATP modification locks the PFK into an inactive T state that cannot be activated. A rapid, irreversible first-order inactivation of the PFK is observed in the presence of oATP. The rate of inactivation is saturable and gives a KoATP of 1.07 +/- 0.27 mM. Complete protection against inactivation is afforded by high concentrations of ATP, and the dependence of the inactivation rate on the concentration of ATP gives a Ki of 326 +/- 26 microM for ATP which is 22-fold higher than the Km for ATP at the catalytic site but close to the binding constant for ATP to the inhibitory site. Fructose 6-phosphate, fructose 2,6-bisphosphate, and AMP provide only partial protection against modification. The pH dependence of the inactivation rate gives a pKa of 8.4 +/- 0.1. Approximately 2 mol of [3H]oATP is incorporated into a subunit of PFK concomitant with 90% loss of activity, and ATP prevents the derivatization of 1 mol/subunit. The oATP-modified enzyme is not activated by AMP or fructose 2,6-bisphosphate. oATP has no effect on the activity of a desensitized form of PFK in which the ATP inhibitory site is modified with diethyl pyrocarbonate but with the active site intact [Rao, G.S.J., Wariso, B.A., Cook, P.F., Hofer, H.W., & Harris, B.G. (1987) J. Biol. Chem. 262, 14068-14073].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was the only reaction substrate which provided protection from inactivation. Acetyl-CoA did not affect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and the presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (k) were 0.11 and 0.26 min-1, respectively. oATP completely inhibited the reaction of [14C]ADP in equilibrium ATP exchange, whereas produced actually no effect on [14C]acetyl-CoA equilibrium with malonyl-CoA exchange. Incorporation of about one equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No restoration of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB[3H]4 has not led to 3H incorporation. The modification process involves elimination of the triphosphate chain of oATP. The results obtained indicate the affinity character of oATP-mediated modification of acetyl-CoA carboxylase. The reagent apparently interacts selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

4.
Sequence comparisons have been combined with mutational and kinetic analyses to elucidate how the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase evolved. Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase involves two steps: activation of the tyrosine substrate by ATP to form an enzyme-bound tyrosyl-adenylate intermediate, and transfer of tyrosine from the tyrosyl-adenylate intermediate to tRNA(Tyr). Previous investigations indicate that the class I conserved KMSKS motif is involved in only the first step of the reaction (i.e. tyrosine activation). Here, we demonstrate that the class I conserved HIGH motif also is involved only in the tyrosine activation step. In contrast, one amino acid that is conserved in a subset of the class I aminoacyl-tRNA synthetases, Thr40, and two amino acids that are present only in tyrosyl-tRNA synthetases, Lys82 and Arg86, stabilize the transition states for both steps of the tRNA aminoacylation reaction. These results imply that stabilization of the transition state for the first step of the reaction by the class I aminoacyl-tRNA synthetases preceded stabilization of the transition state for the second step of the reaction. This is consistent with the hypothesis that the ability of aminoacyl-tRNA synthetases to catalyze the activation of amino acids with ATP preceded their ability to catalyze attachment of the amino acid to the 3' end of tRNA. We propose that the primordial aminoacyl-tRNA synthetases replaced a ribozyme whose function was to promote the reaction of amino acids and other small molecules with ATP.  相似文献   

5.
The functional interaction of Arg-, Ile-, Leu-, Lys- and Met-tRNA synthetases occurring within the same rat liver multienzyme complex are investigated by examining the enzymes catalytic activities and inactivation kinetics. The Michaelis constants for amino acids, ATP and tRNAs of the dissociated aminoacyl-tRNA synthetases are not significantly different from those of the high-Mr multienzyme complex, except in a few cases where the Km values of the dissociated enzymes are higher than those of the high-Mr form. The maximal aminoacylation velocities of the individual aminoacyl-tRNA synthetases are not affected by the presence of simultaneous aminoacylation by another synthetase occurring within the same multienzyme complex. Site-specific oxidative modification by ascorbate and nonspecific thermal inactivation of synthetases in the purified rat liver 18 S synthetase complex are examined. Lys- and Arg-tRNA synthetases show remarkably parallel time-courses in both inactivation processes. Leu- and Met-tRNA synthetases also show parallel kinetics in thermal inactivation and possibly oxidative inactivation. Ile-tRNA synthetase shows little inactivation in either process. The oxidative inactivation of Lys- and Arg-tRNA synthetases can be reversed by addition of dithiothreitol. These results suggest that synthetases within the same high-Mr complex catalyze aminoacylation reactions independently; however, the stabilities of some of the synthetases in the multienzyme complex are coupled. In particular, the stability of Arg-tRNA synthetase depends appreciably on its association with fully active Lys-tRNA synthetase.  相似文献   

6.
Sixteen analogues of ATP have been tested in the aminoacylation reaction of threonyl-tRNA, lysyl-tRNA, and arginyl-tRNA synthetases from baker's yeast. Two compounds are substrates for threonyl-tRNA and for lysyl-tRNA synthetases and five compounds for arginyl-tRNA synthetase. There are six inhibitors for threonyl-tRNA, nine for lysyl-tRNA, and six for arginyl-tRNA synthetase. Their Km and Ki values have been determined. Thus positions 2, 6, 7, 8 and 9 of the purine moiety and 2' and 3' of the sugar moiety of the ATP molecule are important for catalytic action of these aminoacyl-tRNA synthetases. Remarkably arginyl-tRNA synthetase is the first aminoacyl-tRNA synthetase which tolerates bulky substituents at the sugar moiety of ATP. These data fit with the idea that synthetases of subunit structure need magnesium-ion-ATP complexes with an anti conformation as substrates whereas single-chain enzymes accept this substrate in the syn conformation.  相似文献   

7.
J D Dignam  M P Deutscher 《Biochemistry》1979,18(14):3165-3170
A protein was purified from rat liver which stimulated a number of liver aminoacyl-tRNA synthetases. This stimulatory factor was identical with the "tRNA activator" of Dickman & Boll [(1976) Biochemistry 15, 3925] in its mechanism of action and chemical properties, although it was considerably more purified. The two preparations stimulated synthetases by virtue of their pyrophosphatase activity which destroyed the potent inhibitor, PPi, that was present in the reaction mixtures. This PPi was either generated during the reaction or was introduced by contamination of the tRNA or ATP preparations. The degree of inhibition of PPi was strongly influenced by assay conditions, being most effective at low amino acid concentrations, at low pH, and in the presence of heterologous tRNAs. By use of certain assay conditions, PPi concentrations as low as 2 microM could inhibit some synthetases close to 50%. The pitfalls associated with some assay conditions commonly used for aminoacyl-tRNA synthetases are discussed. These studies raise questions about the physiological significance of many previously described aminoacyl-tRNA synthetase stimulatory factors.  相似文献   

8.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (kmod) were 0.11 and 0.26 min-1 respectively. oATP completely inhibited the [14C]ADP in equilibrium ATP exchange and did not effect the [14C]acetyl-CoA in equilibrium malonyl-CoA exchange. Incorporation of approximately 1 equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to 3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA carboxylase by oATP. It was shown that the reagent apparently interacted selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

9.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

10.
Interaction of Na+,K(+)-ATPase from pig kidney in various conformational states with the dialdehyde analogue of ATP, alpha,alpha-(9-adenyl)-alpha'-D-(hydroxymethyl)diglycolaldehyde triphosphate ester (oATP), has been studied. This interaction leads to an enzyme modification which was shown to be of the affinity type according to the following criteria. 1. oATP can be hydrolyzed by Na+,K(+)-ATPase and prevent inhibition of ATPase activity by gamma-[4-(N-2-chloroethyl-N-methylamino)]benzylamide ATP, indicating that it interacts with Na+,K(+)-ATPase in the enzyme active site. 2. oATP irreversibly inhibits ATP-hydrolyzing activity of Na+,K(+)-ATPase; the extent of inactivation is decreased in the presence of 20 mM ATP and depends on the ion composition of the modification medium. The inhibition and ATP protection are maximal in Na+,Mg2(+)-containing buffer. 3. The value of [14C]oATP incorporation into the alpha subunit is proportional to the degree of enzyme inactivation at low (less than 0.1 mM) concentration of oATP and, on extrapolation to complete inhibition, corresponds to incorporation of 1.05 mol reagent/mol alpha subunit. 4. Tryptic hydrolysis of the isolated oATP-modified alpha subunit and subsequent separation of the peptides revealed only one labelled fragment with a molecular mass of about 10 kDa. Localization of the modified fragment in the alpha-subunit polypeptide chain is discussed. A morpholine-like structure was shown to be formed as a result of the modification.  相似文献   

11.
A new continuous spectrophotometric assay is demonstrated for Escherichia coli alanyl-tRNA synthetase. It involves β-γ adenylyl imidophosphate as a substitute for ATP in the pyrophosphate exchange reaction. The net conversion of β-γ adenylyl imidophosphate to ATP can be linked to NADP reduction by hexokinase and glucose-6-P dehydrogenase catalyzed reactions, which can be monitored at 340 nm. This assay can be extended to other aminoacyl-tRNA synthetases which can use β-γ nonhydrolyzable analogs of ATP as an ATP substitute.  相似文献   

12.
Because of its chiralic alpha-phosphorus atom adenosine 5'-O-(1-thiotriphosphate) (ATPalphaS) exists in two diastereomeric forms, arbitrarily named (A) and (B). For phenylalanyl-tRNA synthetase ATPalphaS (A) is a substrate whereas ATPalphaS (B) is neither a substrate nor an inhibitor. During the ATPalphaS (A)/PPi exchange reaction with phenylalanyl-tRNA synthetase the configuration at the alpha-phosphorus is retained. The mechanistic implications of these findings are discussed. Preliminary investigations with several other aminoacyl-tRNA synthetases show that the stereochemical requirement with respect to the alpha-phosphorus of ATP is not identical for all aminoacyl-tRNA synthetases.  相似文献   

13.
The (Na+ + Mg2+)-ATPase of the Acholeplasma laidlawii B plasma membrane was inactivated by the 2',3'-dialdehyde derivative of ATP (oATP). oATP behaved as a reversible competitive inhibitor of this ATPase and was slowly hydrolyzed by the enzyme. In addition, oATP induced an irreversible inactivation of the enzyme. A 62% inactivation of the enzyme correlated with the binding of 16 moles of oATP per mole of the enzyme. In the presence of 5'-adenylyl imidodiphosphate, a non-hydrolyzable substrate analogue, the stoichiometry was 8 moles oATP per mole of ATPase. By SDS-polyacrylamide gel electrophoresis, [U-14C]oATP was found to bind covalently to four of the five subunits of the enzyme, but specific labeling was highest for the gamma-subunit of the ATPase.  相似文献   

14.
Although partial or complete three-dimensional structures are known for three Class I aminoacyl-tRNA synthetases, the amino acid-binding sites in these proteins remain poorly characterized. To explore the methionine binding site of Escherichia coli methionyl-tRNA synthetase, we chose to study a specific, randomly generated methionine auxotroph that contains a mutant methionyl-tRNA synthetase whose defect is manifested in an elevated Km for methionine (Barker, D.G., Ebel, J.-P., Jakes, R.C., & Bruton, C.J., 1982, Eur. J. Biochem. 127, 449-457), and employed the polymerase chain reaction to sequence this mutant synthetase directly. We identified a Pro 14 to Ser replacement (P14S), which accounts for a greater than 300-fold elevation in Km for methionine and has little effect on either the Km for ATP or the kcat of the amino acid activation reaction. This mutation destabilizes the protein in vivo, which may partly account for the observed auxotrophy. The altered proline is found in the "signature sequence" of the Class I synthetases and is conserved. This sequence motif is 1 of 2 found in the 10 Class I aminoacyl-tRNA synthetases and, in the known structures, it is in the nucleotide-binding fold as part of a loop between the end of a beta-strand and the start of an alpha-helix. The phenotype of the mutant and the stability and affinity for methionine of the wild-type and mutant enzymes are influenced by the amino acid that is 25 residues beyond the C-terminus of the signature sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Protein biosynthesis machinery is thought to be mostly compartmentalised within the mammalian cell, involving direct interactions between different components of the translation apparatus. The present research concerns the functional meaning of the interaction between the rabbit liver aminoacyl-tRNA synthetases and 80S ribosomes. We have shown that rabbit liver 80S ribosomes are able to enhance the activity of leucyl-tRNA synthetase, which is a component of high-molecular weight aminoacyl-tRNA synthetase complex, and phenylalanyl-tRNA synthetase not associated within this complex. The ribosomes increase the initial rate of both the total reaction of tRNA aminoacylation and the first step of this reaction, the formation of leucyladenylate. Moreover, a positive cooperativity of the tRNA interaction with two binding sites of leucyl-tRNA synthetase is also increased in the presence of highly purified 80S ribosomes. The effect of 80S ribosomes on partly denatured leucyl-tRNA synthetase and phenylalanyl-tRNA synthetase and the protection by 80S ribosomes of both enzymes against inactivation indicate a refolding and stabilising capacity of the ribosomes. It is concluded that the interaction of aminoacyl-tRNA synthetases and 80S ribosomes is important for the maintenance of an active conformation of the enzymes.  相似文献   

16.
Ewalt KL  Yang XL  Otero FJ  Liu J  Slike B  Schimmel P 《Biochemistry》2005,44(11):4216-4221
In cellular environments, coupled hydrolytic reactions are used to force efficient product formation in enzyme-catalyzed reactions. In the first step of protein synthesis, aminoacyl-tRNA synthetases react with amino acid and ATP to form an enzyme-bound adenylate that, in the next step, reacts with tRNA to form aminoacyl-tRNA. The reaction liberates pyrophosphate (PP(i)) which, in turn, can be hydrolyzed by pyrophosphatase to drive efficient aminoacylation. A potential polymorphic variant of human tryptophanyl-tRNA synthetase is shown here to sequester tryptophanyl adenylate. The bound adenylate does not react efficiently with the liberated PP(i) that normally competes with tRNA to resynthesize ATP and free amino acid. Structural analysis of this variant showed that residues needed for binding ATP phosphates and thus PP(i) were reoriented from their conformations in the structure of the more common sequence variant. Significantly, the reorientation does not affect reaction with tRNA, so that efficient aminoacylation is achieved.  相似文献   

17.
18.
Periodate-oxidized ADP and ATP (oADP and oATP) are substrates and affinity reagents for creatine kinase from rabbit skeletal muscle. oADP and oATP modified a lysine epsilon-amino group in the nucleotide-binding site of the enzyme. Complete inactivation is observed upon binding 2 moles oADP per 1 mole of the enzyme dimer. Modification with oADP is described by a liner dependence of the log of enzyme activity on time, testifying to a pseudo-first-order of the reaction. The reaction rate constant (ki = 8.10(3) min-1) and dissociation constant for the reversible enzyme-oADP complex (Kd = 62 microM) were determined. ADP protected the enzyme from inactivation and covalent binding of the analog, whereas oADP covalently bound to the enzyme was phosphorylated by phosphocreatine. The data obtained allow to suggest that the epsilon-amino group of a lysine residue of the active site is located in close proximity to ribose of ATP and ADP forming a complex with the enzyme. This group seems essential for correct orientation of the nucleotide polyphosphate chain in the enzyme active center, but take no immediate part in the transphosphorylation process.  相似文献   

19.
The aminoacyl-tRNA synthetases are inactivated in extracts of Saccharomyces cerevisiae preferentially to other yeast enzymes and the rate of inactivation greatly increases in extracts of nitrogen-starved cells. The intensity of inactivation varies for the different synthetases. Under conditions in which more than 80 per cent of the leucyl and isoleucyl-tRNA synthetases are inactivated, the activities of the synthetases for serine and arginine remain unchanged and the synthetases for other amino acids are inactivated to different extents. We have analyzed the characteristics of inactivation of the leucyl-tRNA synthetase, and identified the inactivating agent as the yeast proteinase yscB by the following criteria: co-induction of both activities by nitrogen starvation; same pattern of sensitivity to yeast proteinase inhibitors; co-purification through a procedure designed to purify the proteinase yscB and lack of inactivating activity in extracts of a nitrogen-starved yeast mutant lacking proteinase yscB.  相似文献   

20.
The aim of this review is to summarize the data obtained in the author's laboratory during the last decade. The main objects of these investigations were mammalian aminoacyl-tRNA synthetases, mainly bovine tryptophanyl-tRNA synthetase (EC 6.1.1.2). The data are discussed and compared with those described in literature. In the course of these studies it turned out that some properties of mammalian aminoacyl-tRNA synthetases for instance, nuclear location of some of the synthetases, presence of extra-domain in bovine tryptophanyl-tRNA synthetase capable of catalyzing hydrolysis of ATP and GTP in the absence of Zn2+ ions and normal aminoacylation capacity, ability to bind to one of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, formation of aminoacylated and pyrophosphorylated forms of tryptophanyl-tRNA synthetase etc., seem to be unrelated to the main function of the synthetases, catalysis of aminoacyl-tRNA formation, and, therefore, might be classified as noncanonical ones. Comparison of prokaryotic and eukaryotic aminoacyl-tRNA synthetases indicates the multipotential nature of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号