共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
乳状液法制备ZnS纳米粒子 总被引:14,自引:0,他引:14
乳状液法制备ZnS纳米粒子黄宵滨马季铭*程虎民赵振国齐利民(北京大学化学系北京100871)关键词硫化锌,纳米粒子,乳状液,混合乳化剂1996-05-20收稿,1996-09-04修回国家自然科学基金资助项目近年来,利用反胶束或W/O微乳制备超细粒子... 相似文献
3.
本文首先采用油水界面法制备发光纳米ZnS粒子,再通过物理混合法,将其分散在溶有小分子胶凝剂的有机溶液中,流延于玻璃基质表面,得到ZnS荧光薄膜。实验结果表明,ZnS纳米粒子的平均粒径大小约为200 nm,具有立方晶型结构,并且在杂化薄膜中具有良好的分散性;胶凝剂形成的网络结构对ZnS纳米粒子具有良好的限域效应,表现为稳定的发光性能;气敏实验表明,该杂化膜对挥发性有机单胺和二胺具有灵敏的选择性传感作用;且其灵敏度随着杂化薄膜中ZnS担载量的增大逐渐提高;可逆性实验表明该薄膜对乙二胺蒸汽具有良好的可逆响应性。 相似文献
4.
纳米超粒子(Supraparticles, SPs)是指由一种或多种纳米颗粒组装单元,在内、外部驱动力的作用下,自组装形成的具有一定形貌、尺寸和分级结构的纳米实体.由于具有复杂的拓扑结构、丰富的表面可修饰性、可调的集合性质和协同效应, SPs在生物医学等领域具有较大的应用潜力.本文总结了近几年来水相制备SPs的研究进展,包括组装单元之间作用力调制、 SPs的物理、化学性质及其在生物成像、疾病诊疗等方面的应用,最后讨论了SPs结构和性能的精准调控、生物医学应用中存在的主要问题以及未来SPs的发展方向. 相似文献
5.
6.
ZnS纳米粒子的固相合成及其光学性能 总被引:1,自引:0,他引:1
将不同的添加剂引入到低温固相反应中,快速合成了不同尺寸的ZnS纳米粒子。利用TEM表征了产物形貌,利用XRD研究了不同的添加剂、同一添加剂下不同的反应温度、不同反应时间对纳米粒子尺寸的影响。结果表明,不同的添加剂对粒子的尺寸影响较大,其中,十二烷基胺以其特殊的反应方式在较高温度下获得了较小的纳米粒子。另外,在PEG400存在条件下,反应温度和反应时间对粒子尺寸均有一定的影响。同时,对不同条件下所得产物的紫外-可见光吸收性能也进行了测试。 相似文献
7.
8.
9.
通过水热法合成了不同含量In离子掺杂的ZnGa1.99-xInxO4∶Cr0. 013+长余辉纳米粒子(PLNPs)。通过In掺杂和改变反应pH条件,PLNPs的余辉强度和时长明显改善,近红外余辉时间超过96h,平均粒径为15.36nm。实验结果表明,PLNPs的余辉强度被多巴胺猝灭,PLNPs的相对余辉强度(F0-F)/F0与多巴胺浓度在0.005~20μmol/L范围内呈良好的线性关系,线性回归线方程为y=0.1789x+0.4427,相关系数R2=0.9974,对多巴胺的检出限为0.0024μmol/L,其在生物传感领域有应用潜力。 相似文献
10.
11.
A. E. Raevskaya A. V. Korzhak A. L. Stroyuk S. Ya. Kuchmii 《Theoretical and Experimental Chemistry》2005,41(2):111-116
The spectro-optical properties of nanoparticles of ZnS have been studied and the structure of the long wavelength edge of the absorption bands of the semiconductor has been analyzed. The influence of the synthesis conditions on the size and optical properties of the nanoparticles of ZnS formed has been investigated. It has been established that oxidative photo-corrosion of zinc sulfide colloids is accompanied by a decrease in the average size of ZnS nanoparticles and an increase in the defectiveness of their surfaces.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 105–109, March–April, 2005. 相似文献
12.
13.
ZnS量子点的合成及荧光特性 总被引:3,自引:0,他引:3
采用液相沉淀法,用不同的硫源或金属离子螯合剂,从三个途径合成了不同粒径的ZnS量子点,并用透射电子显微镜,X-射线粉末衍射仪所合成的量子点进行了表征,用荧光分光光度计研究了量子点的荧光性质。结果表明,所合成的ZnS量子点为分散性好、纯度高且具有良好荧光特性的球形微粒。 相似文献
14.
Dr. Grégory Beaune Sudarsan Tamang Dr. Aude Bernardin Dr. Pascale Bayle‐Guillemaud Daphna Fenel Dr. Guy Schoehn Dr. Françoise Vinet Dr. Peter Reiss Dr. Isabelle Texier 《Chemphyschem》2011,12(12):2247-2254
The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne–azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy‐filtered transmission electron microscopy (EF‐TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic‐core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper‐induced PL quenching can be interesting for the design of sensitive cation sensors, copper‐free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates. 相似文献
15.
亲油性ZnS纳米微粒的合成 总被引:20,自引:0,他引:20
纳米微粒具有小尺寸效应、表面效应、量子效应和宏观量子隧道效应等一系列普通材料所不具备的特性 ,因而引起科技工作者的广泛重视 ,成为材料科学研究的热点 .制备纳米微粒的方法很多 [1~ 7] ,但由于纳米微粒的小尺寸效应及表面效应 ,通常制备的无机纳米微粒极易团聚 ,而且无机纳米微粒的非油溶性使其在摩擦学领域的应用受到很大限制 .本文采用表面修饰 [8~ 11] 方法 ,通过共沉淀的竞争反应 ,制备了表面为有机修饰剂双十六烷基二硫代磷酸 (DDP)修饰的无机 Zn S纳米微粒 ,并用红外光谱、 X射线光电子能谱和透射电子显微镜等分析手段对表… 相似文献
16.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots. 相似文献
17.
A. E. Raevskaya A. V. Korzhak A. L. Stroyuk S. Ya. Kuchmii 《Theoretical and Experimental Chemistry》2005,41(4):241-246
We have studied the photochemical processes occurring in colloidal ZnS solutions containing zinc chloride and sodium sulfite
as additives. Irradiation of such systems leads to reduction of Zn(II), the rate of which increases as the size of the ZnS
nanoparticles decreases. Based on analysis of the kinetic curves for the reaction, we hypothesize that photoreduction of Zn(II)
is a two-electron process.
__________
Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 4, pp. 231–235, July–August, 2005. 相似文献