首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel pulse sequence scheme is presented that allows the measurement and mapping of myocardial T1 in vivo on a 1.5 Tesla MR system within a single breath-hold. Two major modifications of conventional Look-Locker (LL) imaging are introduced: 1) selective data acquisition, and 2) merging of data from multiple LL experiments into one data set. Each modified LL inversion recovery (MOLLI) study consisted of three successive LL inversion recovery (IR) experiments with different inversion times. We acquired images in late diastole using a single-shot steady-state free-precession (SSFP) technique, combined with sensitivity encoding to achieve a data acquisition window of < 200 ms duration. We calculated T1 using signal intensities from regions of interest and pixel by pixel. T1 accuracy at different heart rates derived from simulated ECG signals was tested in phantoms. T1 estimates showed small systematic error for T1 values from 191 to 1196 ms. In vivo T1 mapping was performed in two healthy volunteers and in one patient with acute myocardial infarction before and after administration of Gd-DTPA. T1 values for myocardium and noncardiac structures were in good agreement with values available from the literature. The region of infarction was clearly visualized. MOLLI provides high-resolution T1 maps of human myocardium in native and post-contrast situations within a single breath-hold.  相似文献   

2.
PURPOSE: To rapidly acquire T(1)-weighted images using a three-dimensional fast low angle shot (3D FLASH) sequence in combination with generalized autocalibrating partially parallel acquisitions (GRAPPA) and variable flip angle (VFA) method at 3.0T. MATERIALS AND METHODS: 3D T(1) maps of model systems (gadolinium [Gd] and agarose phantoms), bovine cartilage, and human subjects were constructed on a 3.0T clinical whole-body MR scanner. The T(1) values of model systems measured using the 2D inversion-recovery fast-spin-echo (IR-FSE) sequence were considered as a reference method to validate the rapid 3D method for comparison. RESULTS: The root mean square coefficient of variation percentage (RMS-CV%) of the median T(1) of agarose phantom across different acquisition methods was approximately 6.2%. The RMS-CV% of the median T(1) of bovine cartilage across different acquisition methods was approximately 4.1%. The RMS-CV% of median T(1) of the cartilages among the subjects was between approximately 7.3% to 11.1%. In our study, rapid 3D-T(1) mapping with VFA and parallel imaging with different acceleration factors (AFs) (AF = 1, 2, 3, and 4) seems to have no obvious influence on the T(1) mapping (before and after contrast agent administration). CONCLUSION: The preliminary results demonstrate that it is possible to quantify 3D-T(1) mapping of the whole knee joint (with 0.7 mm(3) isotropic resolution) under approximately five minutes with excellent in vivo reproducibility at 3.0T.  相似文献   

3.
OBJECTIVE: The objective of this study was to implement a three-dimensional (3-D) T1 mapping sequence (3DLL) at 3.0 T for dGEMRIC based on the Look Locker scheme. MATERIALS AND METHODS: Because all current reports on dGEMRIC are at 1.5 T and mostly using 2-D IR fast spin echo (FSE), data were acquired at 1.5 T and 3.0 T with both 3DLL and 2-D IR-FSE sequence. Phantoms with different concentrations of Gd(DTPA) were used and seven subjects (three asymptomatic, four symptomatic) were scanned using the dGEMRIC technique. RESULTS: The T1 measurements obtained on the phantom with 3DLL show very good agreement with those acquired with 2-D IR-FSE. Using a two-tailed paired t test, the T1 (Gd) measurements in two sections obtained in all subjects with both sequences were found to be statistically indistinguishable at either field strength (P = 0.07 at 1.5 T and P = 0.07 at 3.0 T). CONCLUSIONS: The preliminary data presented here suggest that the 3DLL sequence provides accurate T1 values with sufficient in-plane resolution and allows full joint coverage in less than 10 minutes.  相似文献   

4.
Dunn TC  Lu Y  Jin H  Ries MD  Majumdar S 《Radiology》2004,232(2):592-598
PURPOSE: To evaluate differences in T2 values in femoral and tibial cartilage at magnetic resonance (MR) imaging in patients with varying degrees of osteoarthritis (OA) compared with healthy subjects and to develop a mapping and display method based on calculation of T2 z scores for visual grading and assessment of cartilage heterogeneity in patients with OA. MATERIALS AND METHODS: Knee cartilage was evaluated in 55 subjects who were categorized with radiography as healthy (n = 7) or as having mild OA (n = 20) or severe OA (n = 28). Cartilage regions were determined with manual segmentation of an MR image acquired with spoiled gradients and fat suppression. The segmentation was applied to a map of T2 relaxation time and was analyzed in four knee cartilage compartments (ie, the medial and lateral tibia and femur). Differences between cartilage compartment T2 values and subject groups were analyzed with analysis of covariance. Correlations of cartilage T2 values with clinically reported symptoms and cartilage thickness and volume were examined. Cartilage T2 values were converted to z scores per voxel on the basis of normal population values in the same cartilage compartment to better interpret cartilage heterogeneity and variation from normal. RESULTS: Healthy subjects had mean T2 values of 32.1-35.0 msec, while patients with mild and severe OA had mean T2 values of 34.4-41.0 msec. All cartilage compartments except the lateral tibia showed significant (P <.05) increases in T2 relaxation time between healthy and diseased knees; however, no significant difference was found between patients with mild and severe OA. Correlation of T2 values with clinical symptoms and cartilage morphology was found predominantly in medial compartments. CONCLUSION: Femoral and medial tibial cartilage T2 values increase with the severity of OA.  相似文献   

5.

Objective

To assess and compare subregional and whole T1rho values (median ± interquartile range) of femorotibial cartilage and menisci in patients with doubtful (Kellgren–Lawrence (KL) grade 1) to severe (KL4) osteoarthritis (OA) at 3T.

Materials and methods

30 subjects with varying degrees of OA (KL1–4, 13 females, 17 males, mean age ± SD = 63.9 ± 13.1 years) were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echo (FSE) images in sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage and meniscus Whole-organ MR imaging score (WORMS) grading. Wilcoxon rank sum test was performed to determine whether there were any statistically significant differences between subregional and whole T1rho values of femorotibial cartilage and menisci in subjects with doubtful to severe OA.

Results

Lateral (72 ± 10 ms, median ± interquartile range) and medial (65 ± 10 ms) femoral anterior cartilage subregions in moderate–severe OA subjects had significantly higher T1rho values (P < 0.05) than cartilage subregions and whole femorotibial cartilage in doubtful–minimal OA subjects. There were statistically significant differences in meniscus T1rho values of the medial posterior subregion of subjects with moderate–severe OA and T1rho values of all subregions and the whole meniscus in subjects with doubtful–minimal OA. When evaluated based on WORMS, statistically significant differences were identified in T1rho values between the lateral femoral anterior cartilage subregion in patients with WORMS5–6 (advanced degeneration) and whole femorotibial cartilage and all cartilage subregions in patients with WORMS0–1 (normal).

Conclusion

T1rho values are higher in specific meniscus and femorotibial cartilage subregions. These findings suggest that regional damage of both femorotibial hyaline cartilage and menisci may be associated with osteoarthritis.  相似文献   

6.
PURPOSE: To implement and validate a three-dimensional (3D) T1 measurement technique that is suitable for delayed gadolinium (Gd)-enhanced MRI of cartilage (dGEMRIC) and can be easily implemented with clinically available pulse sequences at 1.5T and 3.0T. MATERIALS AND METHODS: A 3D inversion-recovery prepared spoiled gradient-echo (IR-SPGR) imaging pulse sequence with variable TR was used to implement a 3D T1 measurement protocol. The 3D T1 measurements were validated against a gold-standard single-slice 2D IR T1 measurement protocol in both phantoms and in vivo, in both asymptomatic volunteers and volunteers with osteoarthritis (OA). RESULTS: T1 measurements in phantoms showed a statistically significant correlation between the 2D and 3D measurements at 1.5T (R2=0.993, P<0.001) and 3.0T (R2=0.996, P<0.001). In vivo application demonstrated the feasibility of using this 3D IR-SPGR sequence to evaluate the molecular status of articular cartilage throughout the knee joint with 0.63x0.63x3.0 mm spatial resolution within a 20-minute acquisition, even with the measurement parameters set for the higher T1(Gd) of cartilage at 3T (range=400-900 msec mean T1 within a region of interest (ROI) in cartilage, compared to 200-600 msec mean T1 at 1.5T). CONCLUSION: This 3D T1 measurement protocol may prove useful for the evaluation and follow-up of cartilage dGEMRIC indices in clinical studies of OA.  相似文献   

7.
PURPOSE: To quantitatively assess bone marrow edema-like lesion (BMEL) and the overlying cartilage in osteoarthritis (OA) or anterior cruciate ligament (ACL)-injured knees using magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI). MATERIALS AND METHODS: Eight healthy controls and 30 patients with OA and other injuries who showed BMEL were scanned at 3.0T. A regression model was constructed to automatically calculate the volume of BMEL. Normalized T(1rho) z-scores were calculated within BMEL-overlying cartilage. Three-dimensional (3D) MRSI was acquired in the BMEL and surrounding bone marrow. RESULTS: The mean T(1rho) z-score was significantly higher in BMEL-overlying cartilage than that in surrounding cartilage in the lateral tibia of patients with ACL tears (P < 0.001). Significantly elevated water and unsaturated lipids, and decreased saturated lipids were observed in BMEL. The volume of elevated water correlated with the volume of BMEL. Water content was significantly higher within BMEL than that outside BMEL. The unsaturation index outside BMEL was significantly higher in patients with ACL tears than that in OA. CONCLUSION: 3D MRSI and T(1rho) mapping provide tools to quantitatively evaluate BMEL in OA and knee injury. This may allow us to better understand pathophysiology and evolution of injuries and degenerative conditions of the knee.  相似文献   

8.
As inversion-recovery (IR) technique improves T1 contrast at high field strength, signal enhancement by T1-shortening contrast media may be affected. To clarify the different enhancement properties at 3.0 T, the authors compared T1-weighted sequences. Twelve contrast-enhancing lesions were investigated by spin-echo (SE), inversion recovery fast spin-echo (IR-FSE), two-dimensional gradient-echo (2D GE), and magnetization-prepared three-dimensional gradient-echo (3D GE) sequences and evaluated by comparing signal-intensity enhancements within the lesions. In addition, signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were measured. On average, signal enhancement of the lesions amounted to 60% for SE, 57% for IR-FSE, 32% for 2D GE, and 35% for 3D GE images. CNR of gray matter versus white matter was significantly higher for IR SE and GE imaging than for genuine SE and 2D GE acquisitions (Wilcoxon test), while 2D GE imaging alone had an excellent SNR. As IR-FSE images provide an excellent CNR for gray and white matter in the brain and contrast enhancement performs almost similarly well compared with SE imaging, this technique appears to be well suited for T1-weighted neuroimaging without and with contrast enhancement at 3.0 T. However, the inherent blurring of the IR-FSE can lead to poor performance for very small lesions.  相似文献   

9.

Purpose:

To evaluate the repeatability of the dGEMRIC (delayed gadolinium enhanced MRI of cartilage) method in osteoarthritis‐prone knee joints for three different T1 quantification techniques: two‐dimensional inversion recovery (2D‐IR), three‐dimensional Look‐Locker (3D‐LL), and three‐dimensional variable flip angle (3D‐VFA).

Materials and Methods:

Nine subjects were examined twice, with a 2‐week interval, using all three measurement techniques. Four regions of interest were defined in the central medial and lateral femoral cartilage. The repeatability was evaluated for each measurement technique. For the 3D techniques, the variation between different slices was also evaluated.

Results:

Repeatability expressed by root‐mean‐square coefficient of variation (CVRMS) showed similar results for 2D‐IR and 3D‐LL (5.4–8.4%). For 3D‐VFA CVRMS was higher (9.3–15.2%). Intraclass correlation coefficient showed both 2D‐IR and 3D‐LL reliability to be moderate, while 3D‐VFA reliability was low. Inter‐slice CVRMS and ICC was of the same magnitude as the repeatability. No clear differences could be interpreted between the condyles.

Conclusion:

Both 2D‐IR and 3D‐LL perform well in generating repeatable dGEMRIC results, while 3D‐VFA results are somewhat inferior. Furthermore, repeatability results in this study are similar to previously published results for healthy subjects. Finally, the positioning of the analyzed images is crucial to generate reliable repeatability results. J. Magn. Reson. Imaging 2010;31:1203–1209. © 2010 Wiley‐Liss, Inc.  相似文献   

10.

Purpose:

To measure reproducibility, longitudinal and cross‐sectional differences in T2* maps at 3 Tesla (T) in the articular cartilage of the knee in subjects with osteoarthritis (OA) and healthy matched controls.

Materials and Methods:

MRI data and standing radiographs were acquired from 33 subjects with OA and 21 healthy controls matched for age and gender. Reproducibility was determined by two sessions in the same day, while longitudinal and cross‐sectional group differences used visits at baseline, 3 and 6 months. Each visit contained symptomological assessments and an MRI session consisting of high resolution three‐dimensional double‐echo‐steady‐state (DESS) and co‐registered T2* maps of the most diseased knee. A blinded reader delineated the articular cartilage on the DESS images and median T2* values were reported.

Results:

T2* values showed an intra‐visit reproducibility of 2.0% over the whole cartilage. No longitudinal effects were measured in either group over 6 months. T2* maps revealed a 5.8% longer T2* in the medial tibial cartilage and 7.6% and 6.5% shorter T2* in the patellar and lateral tibial cartilage, respectively, in OA subjects versus controls (P < 0.02).

Conclusion:

T2* mapping is a repeatable process that showed differences between the OA subject and control groups. J. Magn. Reson. Imaging 2012;35:1422–1429. © 2012 Wiley Periodicals Inc.  相似文献   

11.
The objective of this study was to assess the feasibility of using 3D acquisition at 3 T for imaging patients with multiple sclerosis (MS). Feasibility was assessed by three criteria based on acquisition time, specific absorption rate (SAR) and image quality. 47 patients with clinically definite MS underwent imaging in a Siemens 3T Trio MR scanner. Patient safety data were obtained following the scan sessions. The study had local ethics approval. The following three-dimensional (3D) sequences, all acquired coronally, were used: T2 fluid attenuated inversion recovery (FLAIR) (repetition time (TR) 6000 ms, echo time (TE) 353 ms, inversion time (TI) 2200 ms), 0.5x0.5x1 mm voxels, acquisition time 10 min 38 s; T2 turbo spin echo (TSE) (TR 3000 ms, TE 354 ms), 1x1x1 mm voxels, acquisition time 8 min 29 s; T1 inversion recovery (IR) (TR 2040 ms, TE 5.56 ms, TI 1100 ms), matrix 512x448 (0.5x0.5 mm pixels), 0.5x0.5x1 mm voxels, acquisition time 7 min 38 s. Total acquisition time was 26 min 45 s. Example images are presented. 3D scanning at 3 T provides highly detailed, high quality images with acquisition times tolerated by MS patients, even by those with severe disability. The volumetric data are suitable for a wide variety of post-processing techniques; the authors suggest that 3D studies at 3 T should be considered as the possible brain imaging protocol for either cross-sectional or longitudinal studies in MS and that the 3D T2 FLAIR sequence should be considered for the purposes of radiological diagnosis.  相似文献   

12.
PURPOSE: To develop a T1rho-prepared, balanced gradient echo (b-GRE) pulse sequence for rapid three-dimensional (3D) T1rho relaxation mapping within the time constraints of a clinical exam (<10 minutes), examine the effect of acquisition on the measured T1rho relaxation time and optimize 3D T1rho pulse sequences for the knee joint and spine. MATERIALS AND METHODS: A pulse sequence consisting of inversion recovery-prepared, fat saturation, T1rho-preparation, and b-GRE image acquisition was used to obtain 3D volume coverage of the patellofemoral and tibiofemoral cartilage and lower lumbar spine. Multiple T1rho-weighted images at various contrast times (spin-lock pulse duration [TSL]) were used to construct a T1rho relaxation map in both phantoms and in the knee joint and spine in vivo. The transient signal decay during b-GRE image acquisition was corrected using a k-space filter. The T1rho-prepared b-GRE sequence was compared to a standard T1rho-prepared spin echo (SE) sequence and pulse sequence parameters were optimized numerically using the Bloch equations. RESULTS: The b-GRE transient signal decay was found to depend on the initial T1rho-preparation and the corresponding T1rho map was altered by variations in the point spread function with TSL. In a two compartment phantom, the steady state response was found to elevate T1rho from 91.4+/-6.5 to 293.8+/-31 and 66.9+/-3.5 to 661+/-207 with no change in the goodness-of-fit parameter R2. Phase encoding along the longest cartilage dimension and a transient signal decay k-space filter retained T1rho contrast. Measurement of T1rho using the T1rho-prepared b-GRE sequence matches standard T1rho-prepared SE in the medial patellar and lateral patellar cartilage compartments. T1rho-preparedb-GRE T1rho was found to have low interscan variability between four separate scans. Mean patellar cartilage T1rho was elevated compared to femoral and tibial cartilage T1rho. CONCLUSION: The T1rho-prepared b-GRE acquisition rapidly and reliably accelerates T1rho quantification of tissues offset partially by a TSL-dependent point spread function.  相似文献   

13.
(1) To assess the degree of focal cartilage abnormalities in physically active and sedentary healthy subjects as well as in patients with early osteoarthritis (OA). (2) To determine the diagnostic value of T2 and T1rho measurements in identifying asymptomatic physically active subjects with focal cartilage lesions. Thirteen asymptomatic physically active subjects, 7 asymptomatic sedentary subjects, and 17 patients with mild OA underwent 3.0-T MRI of the knee joint. T1rho and T2 values, cartilage volume and thickness, as well as the WORMS scores were obtained. Nine out of 13 active healthy subjects had focal cartilage abnormalities. T1rho and T2 values in active subjects with and without focal cartilage abnormalities differed significantly (p < 0.05). T1rho and T2 values were significantly higher (p < 0.05) in early OA patients compared to healthy subjects. T1rho measurements were superior to T2 in differentiating OA patients from healthy subjects, yet T1rho was moderately age-dependent. (1) Active subjects showed a high prevalence of focal cartilage abnormalities and (2) active subjects with and without focal cartilage abnormalities had different T1rho and T2 composition of cartilage. Thus, T1rho and T2 could be a parameter suited to identify active healthy subjects at higher risk for developing cartilage pathology.  相似文献   

14.

Purpose:

To examine the changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis (OA) and their association with focal knee lesions at baseline.

Materials and Methods:

Forty‐one subjects without and 101 subjects with OA risk factors (such as history of knee injury or surgery) were selected from the Osteoarthritis Initiative database (age: 45–55 years, no radiographic OA in the right knee). Baseline magnetic resonance imaging (MRI) of the right knee were assessed for prevalence and grade of focal knee lesions. Right knee cartilage T2 measurements were performed in five compartments (patella, medial/lateral femur/tibia) at baseline and at 24‐month follow‐up.

Results:

Compared to subjects without OA risk factors, those with OA risk factors showed no significant differences in baseline prevalence and grade of focal knee lesions (P > .05), but had significantly higher T2 values in the medial femur compartment at both timepoints (P < 0.05). T2 values averaged over all five compartments increased significantly over 24 months in both groups, but differences in T2 increase between the groups were not significant. Subjects with cartilage lesions showed significantly higher T2 values compared to subjects without cartilage lesions at both timepoints, but no accelerated T2 increase over 24 months (P > 0.05).

Conclusion:

Cartilage T2 values significantly increased over 24 months in subjects with and without OA risk factors, but neither the presence of OA risk factors nor the presence of cartilage lesions at baseline were associated with these T2 increases. J. Magn. Reson. Imaging 2012;370‐378. © 2011 Wiley Periodicals, Inc.  相似文献   

15.

Purpose

To demonstrate a modification of the Look‐Locker (LL) technique that enables rapid high resolution T1 mapping over the physiologic range of intracranial T1 values, ranging from white matter to cerebrospinal fluid (CSF). This is achieved by use of a three‐dimensional (3D) balanced steady‐state free precession (b‐SSFP) acquisition (for high signal‐to‐noise and resolution) along with variable repetition time to allow effective full recovery of longitudinal magnetization.

Materials and Methods

Two modifications to the Look‐Locker technique were made to realize high resolution imaging in a clinically reasonable scan time. The 3D b‐SSFP acquisition after an initial inversion pulse was followed by a variable repetition time. This technique makes it possible to image a volume of thin contiguous slices with high resolution and accuracy using a simple fitting procedure and is particularly useful for imaging long T1 species such as CSF. The total scan time is directly proportional to the number of slices to be acquired. The scan time was reduced by almost half when the repetition time was modified using a predesigned smooth function. Phantoms and volunteers were imaged at different resolutions on a 3 Tesla scanner. Results were compared with other accepted techniques.

Results

T1 values in the brain corresponded well with full repetition time imaging as well as inversion recovery spin echo imaging. T1 values for white matter, gray matter, and CSF were measured to be 755 ± 10 ms, 1202 ± 9 ms, and 4482 ± 71 ms, respectively. Scan times were reduced by approximately half over full repetition time measurements.

Conclusion

High resolution T1 maps can be obtained rapidly and with a relatively simple postprocessing method. The technique is particularly well suited for long T1 species. For example, changes in the composition of proteins in CSF are linked to various pathologies. The T1 values showed excellent agreement with values obtained from inversion recovery spin‐echo imaging. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
PURPOSE: To test the feasibility of in vivo magnetic resonance T(1rho) relaxation time measurements of hip cartilage, and quantify the reproducibility of hip cartilage thickness, volume, T(2), T(1rho), and size of femoral head measurements. MATERIALS AND METHODS: The hip joint of five human healthy volunteers, one subject with mild hip osteoarthritis (OA) and one subject with advanced hip OA, was imaged with magnetic resonance imaging (MRI) at 3T. Hip cartilage thickness, volume, T(1rho), and T(2) were quantified, as well as the size of the femoral head. All imaging and analysis procedures were performed twice for the healthy volunteers to assess reproducibility. RESULTS: In vivo MR T(1rho) measurements of hip cartilage at 3T were feasible as demonstrated by high quality images and relaxation time maps. High levels of reproducibility were obtained for measurements of hip cartilage thickness (CV(SD) = 2.19%), volume (CV(SD) = 3.5%), T(2) (CV(SD) = 5.89%), T(1rho) (CV(SD) = 2.03%), and size of femoral head (CV(SD) = 0.49%). Mean T(2) and T(1rho) relaxation time values for human healthy subjects were 28.38 (+/-2.66) msec and 38.72 (+/-3.84) msec, respectively. Mean T(2) and T(1rho) relaxation time values for subjects with OA were 34.78 (+/-8.36) msec and 44.07 (+/-0.99) msec, respectively. T(2) and T(1rho) values increased from the deep to the superficial layers. CONCLUSION: Qualitative and quantitative results indicate that the MRI techniques presented in this study may be applied clinically to patients with OA of the hip to investigate these parameters at different stages of disease.  相似文献   

17.

Objectives

To investigate the value of diffusion tensor imaging (DTI) of articular cartilage to differentiate healthy from osteoarthritis (OA) subjects in all cartilage regions.

Methods

DTI was acquired sagittally at 7 T in ten healthy and five OA (Kellgren-Lawrence grade 2) subjects with a line scan diffusion tensor sequence (LSDTI). Three healthy volunteers and two OA subjects were examined twice to assess the test-retest reproducibility. Averaged mean diffusivity (MD) and fractional anisotropy (FA) were calculated in each cartilage region (femoral trochlea, lateral and medial femoral condyles, patella, and lateral and medial tibia).

Results

The test-retest reproducibility was 2.9 % for MD and 5.6 % for FA. Averaged MD was significantly increased (+20 %, p?<?0.05) in the OA subjects in the lateral femoral condyle, lateral tibia and the femoral trochlea compartments. Averaged FA presented a trend of lower values in the OA subjects (-12 %), which was only significant for the lateral tibia.

Conclusions

In vivo DTI of articular cartilage with coverage of all cartilage regions using an LSDTI sequence is feasible, shows excellent reproducibility for MD and FA, and holds potential for the diagnosis of OA.

Key points

? DTI of articular cartilage is feasible at 7 T in all cartilage regions ? DTI of articular cartilage can potentially differentiate healthy and OA subjects  相似文献   

18.
RATIONALE AND OBJECTIVES: Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment method for early changes. Recently, it was shown that cartilage homogeneity visualized by MRI representing the biochemical changes undergoing in the cartilage is a potential marker for early detection of knee osteoarthritis (OA) and is also able to significantly separate groups of healthy subjects from those with OA. The purpose of this study was twofold. First, we wished to evaluate whether the results on cartilage homogeneity from the previous study can be reproduced using an independent population. Second, based on the homogeneity framework, we present an automatic technique that partitions the region of interest in the cartilage that contributes most to discrimination between healthy and OA subjects and allows for identification of the most implicated areas in early OA. These findings may allow further investigation of whether cartilage homogeneity reveals a predisposition for OA or whether it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography, and the knees were categorized by the Kellgren and Lawrence (KL) Index. Next, based on a gradient descent optimization technique, the cartilage region that contributed to the maximum statistical significance of homogeneity in separating healthy subjects from the diseased was partitioned. The generalizability of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using the automatic gradient descent technique, the partitioned region was toward the peripheral part of the cartilage sheet. Using this region, the P values for separating the different groups based on homogeneity were 5 x 10(-9) (KL 0 versus KL 1) and 1 x 10(-15) (KL 0 versus KL >0). The precision of homogeneity for the partitioned region assessed as a test-retest root-mean-square coefficient of variation was 3.3%. Bootstrapping proved to be an effective regularization tool in reducing overfitting errors. CONCLUSION: The validation study supported the use of cartilage homogeneity as a tool for the early detection of knee OA and for separating groups of healthy subjects from those who have disease. Our automatic, unbiased partitioning algorithm based on a general statistical framework outlined the cartilage region of interest that best separated healthy from OA conditions on the basis of homogeneity discrimination. We have shown that OA affects certain areas of the cartilage more distinctly, and these areas are located more toward the peripheral region of the cartilage. We propose that this region corresponds anatomically to cartilage covered by the meniscus in healthy subjects. This finding may provide valuable clues in the early detection and monitoring of OA and thus may improve treatment efficacy.  相似文献   

19.

Purpose:

To evaluate a fast T1 mapping technique using incomplete inversion recovery 3D balanced steady‐state free precession acquisition along with a two‐parameter model fit.

Materials and Methods:

Using Bloch simulations, we explored the two‐parameter model fit for data acquired using such an acquisition scheme. The parameter space over which the fit holds good was determined through simulations. A linear correction was derived for the R1* (1/T1*) values so determined. Two phantoms and six volunteers were scanned using the described technique. Comparison scans using full recovery as well as gold standard inversion recovery spin echo were also performed.

Results:

The two‐parameter fit works exceedingly well over a large parameter space. T1 values in the phantoms showed an error of 4.9% and 39% before correction and 0.9% and 1.6% after correction. For the six volunteers, error in T1 value was 5.3% for white matter (WM) and 2.4% for gray matter (GM) after correction, while it was 11.2% and 18.2% before correction.

Conclusion:

The work presented here allows for T1 map determination with higher resolution and shorter acquisition time than previously possible. The technique is especially well suited for GM/WM T1 mapping. J. Magn. Reson. Imaging 2012;35:1437–1444. © 2012 Wiley Periodicals Inc.  相似文献   

20.
The objective of this study is to compare the detectability of brain metastases at 3T among three contrast-enhanced sequences, spin-echo (SE) sequence, inversion recovery fast SE (IR-FSE) sequence (both with section thickness of 6 mm), and three-dimensional fast spoiled gradient-echo (3D fast SPGR) sequence with 1.4 mm isotropic voxel. First, phantom studies were performed to quantify the contrast-enhancement ratio (CER) with three sequences. In 21 consecutive patients with brain metastases, axial images of three sequences at 3T were obtained after administration of gadoteridol. Two neuroradiologists assessed the detectability of brain metastases for the three sequences. In the phantom study, no evident difference in the CER was demonstrated among three sequences. Significantly more brain metastases were detected with 3D fast SPGR than with SE and IR-FSE (a total of 97 lesions with 3D fast SPGR vs. 64 with SE and 63 with IR-FSE). In particular, 3D fast SPGR was superior to the other two sequences in detection of the small lesions (<3 mm). At 3T, the contrast-enhanced 3D fast SPGR with 1.4 mm isotropic voxel is clinically more valuable for detecting small brain metastases than the SE and IR-FSE with section thickness of 6 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号