首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The use of dietary fibre in bread products is increasing because of consumer demand for healthier products. However, an increase in dietary fibre level changes the rheological properties of the dough and also the quality properties of the final bread product. In this study, effects on dough and bread staling were followed after replacing 3% of wheat flour by fibre‐rich additives (fine durum, oat bran, rye bran and wheat bran). Free‐standing and pan‐baked loaves were baked to compare the influence of baking method and loaf shape. RESULTS: All additives increased dough stability, with oat bran giving the greatest stability and longest development time. Parameters measured during storage were distribution, migration and loss of water, cutability, crumbliness, firmness and springiness. Furthermore, amylopectin retrogradation and amylase‐lipid complex formation were assessed. Oat bran provided similar or better results than the control for all staling parameters, while other additives gave no general improvements. Cutability reached a plateau when crumb firmness was ≥ 4 N. CONCLUSION: Small amounts of fibre‐rich additives had a significant influence on staling. However, the baking method (free‐standing or pan‐baked bread) had a greater impact on staling than the additives, thus displaying the importance of the baking method. Cutability was found to be related to firmness. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
Effect of different carbohydrases on fresh bread texture and bread staling   总被引:5,自引:0,他引:5  
The effect of cellulase, xylanase and #-glucanase on the properties of wheat bread and its staling during storage was studied. The presence of the carbohydrases tested led to breads with high specific volume compared to the control. The texture profile analysis was greatly modified in that the firmness of bread crumb was reduced by all the carbohydrases. A kinetic study of the firmness along with the storage by the Avrami equation showed that the presence of carbohydrases produced softer crumbs and also reduced the rate of bread firming, although no great differences were found between enzymes. Since retrogradation of starch is one of most important factors related to bread staling, the modification of the amylopectin retrogradation was measured by scanning calorimetry. Those studies showed that all the carbohydrases decrease the starch retrogradation, and that the xylanases had the greatest effect. The simultaneous analysis of the firming and starch retrogradation results revealed that the anti-staling effect of xylanase might be due to the retardation in the starch retrogradation, while in the case of cellulase and #-glucanase some other mechanism should be implied in their anti-staling action.  相似文献   

3.
Normal and heat-treated barley, both as flour and waxy starch, were added at a concentration of 3% to a white wheat bread. The effect not only of selected additives, but also of laboratory- and industrial baking processes on stalling was evaluated. Laboratory baked breads with heat-treated barley flour differed from control breads with regard to water content, firmness and amylopectin retrogradation. The influence of water content on firmness increased with storage time. All laboratory baked breads with barley additives, except normal barley flour, were less firm after 7 days of storage as compared to the control although amylopectin retrogradation tended to increase. Improved water absorption, and consequently, increased water content and/or different water binding capacities of the flour/starch could explain these results. Industrial baking caused higher water losses, especially in breads containing additives, thus reducing the effects on amylopectin retrogradation and firmness.  相似文献   

4.
Effects of sourdough and enzymes on staling of high-fibre wheat bread   总被引:1,自引:0,他引:1  
The effects of sourdough and enzyme mixture (α-amylase, xylanase and lipase) on the specific volume, staling and microstructure of wheat pan bread supplemented with wheat bran were studied. Staling of bread was followed for 6 days by measuring the crumb firmness, changes in crystallization of amylopectin (DSC), increase in signal from the solid phase (NMR) and by light microscopy. The most effective treatment in improvement of quality was the combination of bran sourdough and enzyme mixture. During storage the rate of changes in crumb firmness, amylopectin crystallinity and rigidity of polymers were greatest for the white wheat bread. The most pronounced microstructural changes were swelling of starch granules and separation of amylose and amylopectin in the starch granules. Least changes in crumb firmness, amylopectin crystallinity and rigidity of polymers were observed in bran sourdough bread with enzymes. In contrast to white wheat bread, the starch granules were very much swollen in bran sourdough bread with enzyme mixture. This was hypothesized to be due to the higher water content of bran bread, and degradation of cell wall components leading to altered distribution of water among starch, gluten and bran particles during storage.  相似文献   

5.
The use of gluten-free products is increasing since an increasing number of people (1–2 %) are suffering from Celiac disease and thereby need a gluten-free diet. Gluten-free bread tends to have shorter shelf life and quality compared with white wheat bread. In this study, 3 % (flour basis) of pre-gelatinized oat and barley flour as well as an emulsifier were added to a gluten-free mix to increase the water content by 1.5–2 %, affect the starch retrogradation and the formation of amylose lipid complex. The staling was followed measuring the firmness (texture analyzer), water content and distribution (nuclear magnetic resonance), amylopectin retrogradation and the formation of amylose–lipid complex (differential scanning calorimetry) in order to see the impact of both macroscopic and molecular changes on firmness. Both gluten-free bread and a white wheat bread were used as control loaves. Largest specific volume was found in the gluten-free control. The firmness varied with both the specific volume and the point of measurement. The amount of retrograded amylopectin increased the firmness, although this effect was dependent on the type of bread, in terms of distribution and availability of the water within the system. The proton relaxation time, which was representing movable water, decreased during storage and revealed that both the amylopectin retrogradation and the lipid complex formation were affecting the rigidity of the amorphous domain and not only the crystalline regions. In contrast to the other recipes, the use of emulsifier caused limited retrogradation and a low correlation between the texture properties and time-dependent events.  相似文献   

6.
The effect of the amount of damaged starch in two different flours (wheat and triticale) on the bread quality and its behaviour during storage has been analysed. Two wheat and one triticale flour cultivars were milled in a disc mill to obtain different levels of damaged starch. Differential Scanning Calorimetry (DSC) and Rapid Visco Analyser (RVA) were used to characterize the flour properties and TA-XT2 textural analyses were made on breadcrumb. The effect of the damaged starch content on the bread firming, the amylopectin retrogradation and starch-pasting properties were studied in order to establish any relationship between damaged starch and bread staling. DSC analysis showed that the damaged starch content changed the thermal behaviour of flour–water mixtures: the higher the levels of damaged starch the lower the starch-gelatinization enthalpy and the higher the melting enthalpy of amylose–lipid complexes. The amount of amylopectin retrogradation and breadcrumb firming increased with the damaged starch content at the beginning of storage time; however, differences were decreasing at final storage time. The flour viscosity during pasting decreased as their damaged starch content increased.  相似文献   

7.
The possible role of maltodextrins with a low degree of polymerisation (DP) as agents that retard bread staling was studied by following the staling process on a model system consisting of starch gels by means of textural and calorimetric assays. Maltodextrins of DP 2 to 7 were added at concentrations of 0.5% (starch base) to 15% (w/w) starch gels. Textural and calorimetric results were analysed by the Avrami equation. The addition of maltodextrins promoted a slight decrease in the initial firmness of the starch gels. All the samples with maltodextrins showed a lower rate of firming. The same effect was observed on the rate of amylopectin retrogradation, except for the maltose sample under short and intermediate storage times. It was concluded that low DP maltodextrins might be responsible for the anti-staling effect obtained by using α-amylase addition in the breadmaking process.  相似文献   

8.
Abstract: The staling of cakes enriched with untreated brans and endoxylanase‐treated brans was evaluated by monitoring the changes in physicochemical, thermal, and sensorial properties of cakes during 7‐d storage. Oat and rice bran were treated with different levels (0, 70, and 700 ppm) of an endoxylanase enzyme and added to cakes on 30% flour weight basis. Moisture losses, water activity, crumb firmness, starch retrogradation, and sensorial characteristics were used as staling indicators. Avrami‐type equations were efficiently used for modeling the starch retrogradation kinetics, while linear models most adequately described crumb firming kinetics. Cake staling induced an increase in crumb firmness and enthalpy of amylopectin retrogradation, and a decrease in crumb moisture and sensory quality and acceptability scores of cakes. Oat bran‐containing cakes better maintained their characteristics compared to the ones containing rice bran along the 7‐d storage. Endoxylanase treatment of brans delayed the changes naturally induced during staling in crumb moisture content, amylopectin retrogradation enthalpy, and crumb firmness in the respective cakes. Deterioration of the sensorial characteristics was slower for the cakes containing endoxylanase‐treated brans, as well. The level of endoxylanase treatment did not differentiate significantly (P < 0.05) any of the staling indicators. Overall, this study demonstrated that addition of endoxylanase‐treated brans can result in cakes with improved nutritional characteristics and increased shelf life. Practical Application: The results of the study show the potential of using enzymes to modify underutilized food sources that can be properly incorporated in baked goods, improving their nutritional value, their quality characteristics, and providing longer shelf life. The developed procedure and results can be utilized by the bakery industry to make high fiber and low cost bakery products with improved sensorial characteristics that are appealing to the consumers.  相似文献   

9.
Two baking times (9 and 24 min) and storage temperatures (4 and 25 °C) were used to explore the impact of heat exposure during bread baking and subsequent storage on amylopectin retrogradation, water mobility, and bread crumb firming. Shorter baking resulted in less retrogradation, a less extended starch network and smaller changes in crumb firmness and elasticity. A lower storage temperature resulted in faster retrogradation, a more rigid starch network with more water inclusion and larger changes in crumb firmness and elasticity. Crumb to crust moisture migration was lower for breads baked shorter and stored at lower temperature, resulting in better plasticized biopolymer networks in crumb. Network stiffening, therefore, contributed less to crumb firmness. A negative relation was found between proton mobilities of water and biopolymers in the crumb gel network and crumb firmness. The slope of this linear function was indicative for the strength of the starch network.  相似文献   

10.
Waxy corn starch pastes (10%) were stored at 5 °C for up to 35 days, and the powder specimens of retrograded starches thus obtained were added to wheat flour for bread baking at a level of 5%. The effect of retrograded starch on the staling of bread was determined. The loaf which contained retrograded waxy corn starch, which was prepared by storing the 10% paste at 5 °C for 7 days, showed an increase in specific volume and the results of the sensory evaluation showed that it was very acceptable. During the storage of bread, the increase in firmness and decrease in degree of gelatinization were suppressed by adding retrograded waxy corn starch. The moisture content of bread crumbs did not relate to firmness. Added retrograded waxy corn starch decreased the final viscosity of flour. The crystalline region of retrograded waxy corn starch used for bread baking included longer chains from amylopectin which in raw starch occurred in the amorphous region.  相似文献   

11.
Staling of bread is cause of significant product waste in the world. We reviewed the literature of the last 10 y with the aim to give an up‐to‐date overview on processing/storage parameters, antistaling ingredients, sourdough technology, and measurement methods of the staling phenomenon. Many researchers have been focusing their interest on the selection of ingredients able to retard staling, mainly hydrocolloids, waxy wheat flours (WWF), and enzymes, but different efforts have been made to understand the molecular basis of bread staling with the help of various measurement methods. Results obtained confirm the central role of amylopectin retrogradation and water redistribution within the different polymers in determining bread staling, but highlighted also the importance of other flour constituents, such as proteins and nonstarch polysaccharides. Data obtained with thermal, spectroscopy, nuclear magnetic resonance, X‐ray crystallography, and colorimetry analysis have pointed out the need to encourage the use of one or more of these techniques in order to better understand the mechanisms of staling. Results so far obtained have provided new insight on bread staling, but the phenomenon has not been fully elucidated so far.  相似文献   

12.
Substitution of starch from barley, corn, oat, potato, rice or sorghum for prime wheat starch in the formulation of Arabic bread resulted in breads with significantly (P < 0.05) different textural attributes from regular wheat bread except for barley starch. Substitution of waxy barley starch (957 g kg−1 amylopectin) for wheat starch (279 g kg−1 amylopectin) resulted in bread that was not significantly different from regular wheat bread when assessed in the fresh state. However, upon aging, the waxy barley starch-containing bread staled at a significantly (P < 0.05) faster rate than regular wheat bread. Breads made with waxy barley starch cross-linked with 50, 200 or 500 ppm phosphorus oxychloride showed higher enthalpy of melting (ΔH) upon aging and staled faster than the bread formulated with waxy barley starch. These findings suggest that amylopectin retrogradation is one of the determinants of Arabic bread staling and that cross-linking promotes recrystallisation of amylopectin, possibly by keeping the polymer chains in close proximity. The rate of staling in breads formulated with cross-linked waxy barley starch decreased with increasing levels of cross-linking, possibly owing to restrictions in the degree of starch swelling. © 1999 Society of Chemical Industry  相似文献   

13.
Effect of soy milk powder addition on staling of soy bread   总被引:1,自引:0,他引:1  
Effect of soy milk components (soluble fibre (SF), insoluble fibre (ISF), soy protein) on physicochemical properties (crust and crumb colour, water activity, total moisture content, “freezable” water (FW), “unfreezable” water (UFW), amylopectin recrystallisation (ARC), stiffness and firmness) of soy breads stored for 7 days was studied. By the end of storage ISF additions significantly increased ARC (from 0.01 to 0.57 W/g), whereas SF additions (0.30 W/g) retarded staling with respect to soy flour bread (0.39 W/g). Principal Component Analysis (PCA) of all the different treatments and formulations indicated that SMP addition resulted in the lowest firmness and least amylopectin retrogradation at the end of storage, likely due to the synergistic effect of soluble fibre, partly denatured soy proteins and lipid content of this ingredient.  相似文献   

14.
The study was carried out to investigate the effect of hyperthermophilic xylanase B (XynB) from Thermotoga maritima on the properties of wheat bread and its staling during storage. The presence of XynB in the dough led to improvements in the breadmaking quality (i.e. specific volume and crumb structure) and provided an anti-staling effect on breads compared to the control. Addition of XynB could cause ≈60% increase in specific volume in comparison with the control. By fitting the crumb firming kinetics during storage to the Avrami equation, it showed that XynB retarded the bread staling by reducing the initial crumb firmness and the firming process during storage. XynB hydrolyzed the isolated WU-AX faster than WE-AX under the ratio of wheat AX in wheat flour. Improvement of bread quality by XynB can partly be ascribed to the enzyme specificity.  相似文献   

15.
The effect of frozen storage time of par-baked bread on the bread crumb and staling of bread obtained after thawing and full baking is described. The moisture content, hardness and retrogradation enthalpy of the amylopectin were determined in the par-baked bread and in the full baked bread after 7, 14, 28 and 42 days of frozen storage at −25 °C. In addition, the effect of frozen storage on the crumb microstructure was analyzed by cryo scanning electron microscopy (Cryo-SEM). The moisture content of both partially and full baked bread decreased with the time of frozen storage. The crumb hardness of the par-baked bread after different periods of frozen storage was kept constant, while that of their full baked counterpart increased with the time of frozen storage. In both types of breads, the enthalpy of amylopectin retrogradation did not vary with the period of frozen storage. The staling, measured as hardness increase and amylopectin retrogradation, increased along the frozen storage. The changes observed on the frozen par-baked bread after thawing were attributed to the damage of bread structures produced by the ice crystallization, and the microstructure study support that conclusion.  相似文献   

16.
Enzymes such as ??-amylase are extensively used to retard the staling process. Enzymes are acting both during fermentation and during baking. The objective of this work was to determine the relative action of ??-amylase during fermentation and during baking. The impact of the baking conditions (time, temperature) was also considered. To attain this aim, a degassed bread crumb was baked in a miniaturized system using two programs of baking: heating rates 10.27 and 6.88?°C/min corresponding to 180 and 220?°C baking temperatures, respectively. Mechanical and thermodynamic properties of the degassed crumb were assessed during aging of bread by determining the Young??s modulus E, the amount of freezable water, and the melting enthalpy of retrograded amylopectin. A first-order kinetic model was used to determine the different parameters of staling kinetics. Results showed that the hardening of crumb increased during storage. The kinetics were faster for samples baked with fast heating rate than for those baked with slow heating rates. The use of enzymes decreased the Young??s modulus but did not have any effect on the staling rate. Calorimetric analysis of the starch retrogradation showed a reduction of the amount of freezable water during storage with an increase of retrograded amylopectin. A comparison between mechanical properties of conventional crumb and of the degassed dough confirmed that experimental data fitted correctly the Gibson and Ashby??s model.  相似文献   

17.
As a result of the opinion given by the European Food Safety Authority about the safety of chia seed (Salvia hispanica L) and whole ground chia seed as food ingredients, they may be placed on the market in the European Community as novel food ingredients to be used in bread products. The objective of the present investigation was to develop new cereal-based products with increased nutritional quality by using chia and ground chia seeds (whole chia flour, semi-defatted chia flour and low-fat chia flour) in order to evaluate its potential as a bread-making ingredient. The samples with chia addition significantly increased the levels of proteins, lipids, ash and dietary fibre in the final product compared to the control sample. Breads with seeds or ground seeds showed similar technological quality to the control bread, except for the increase in specific bread volume, decrease in crumb firmness and change in crumb colour. Sensory analysis showed that the inclusion of chia increased overall acceptability by consumers. The thermal properties of the starch did not alter substantially with the inclusion of chia. However, the incorporation of chia inhibited the kinetics of amylopectin retrogradation during storage, which would be directly related to the delay in bread staling.  相似文献   

18.
 Thermal properties (gelatinization, amylose-lipid complex dissociation and amylopectin retrogradation) of bread samples formulated with two different quality wheat flours, two enzymes (α-amylase/pentosanase, lipase and their mixture), and three microbial sourdough starters were studied with a differential scanning calorimeter. The carbohydrases modified gelatinization temperature and enthalpy, whilst the lipase modified the amylose-lipid complex dissociation. The enthalpy of amylopectin retrogradation was significantly influenced only by the storage of breads. Second-order interactive effects of enzymes with flour or starter were found for gelatinization and/or amylose-lipid complex dissociation parameters. Some interesting relationships were observed between thermal and textural properties of fresh and stored breads. Received: 22 September 1998 / Revised version: 28 October 1998  相似文献   

19.
Rheological properties of dough and bread quality of frozen dough-bread containing 18.4% of hydroxypropylated (HTS), acetylated (ATS), and phosphorylated cross-linked (PTS) tapioca starch with different degrees of modification and 1.6% of dried powdered gluten were compared to the same amount of native tapioca starch (NTS) or wheat flour-bread. Doughs substituted with native or modified tapioca starches had the same mixing tolerance as 100% wheat flour. The dough was frozen and stored for 1 week at −18°C, and thawed (one freeze-cycle). The amount of freezable water in the dough substituted with native or modified tapioca starches was not significantly different from that of wheat flour. Frozen dough-bread substituted with highly modified HTS (degree of substitution; DS 0.09–0.11) retarded bread staling, while lowly modified HTS (DS 0.06–0.07) or ATS (DS 0.02–0.04), and PTS (0.004–0.020% phosphoryl content) substitution fastened bread staling as compared with frozen dough-bread baked from wheat flour. The breadcrumbs containing HTS and ATS felt tacky, whereas the bread containing PTS was dry feel. HTS and ATS swelled and collapsed easily during heating, while PTS was difficult to swell and disperse as compared with NTS, therefore the gelatinization properties seemed to affect the texture of bread. Breadcrumb containing HTS showed small firmness during storage, and highly modified HTS-h (DS 0.1) was the smallest. This means highly hydroxypropylated tapioca starch significantly retards bread staling. Staling properties and texture of frozen dough-bread with various tapioca starches were the same as conventional bread baked with the same amount of tapioca starches. These results suggest that a one freeze–thaw cycle and a 1-week frozen period do not change characteristics of starch, gelatinization and retrogradation properties as compared with the conventional method, and the highly modified HTS-h is prominent anti-staling food-stuff in frozen dough.  相似文献   

20.
BackgroundDespite the associated health benefits of whole grains, consumption of whole grain products remains far below recommended levels. Whole wheat bread is often associated with many distinctive attributes such as low loaf volume, firm and gritty texture, dark and rough crust and crumb appearance, bitter flavor, and reduced shelf-life. There is a need to improve its quality and sensory characteristics so as to increase consumer appeal and, ultimately, increase the intake of whole wheat bread. The inclusion of various ingredients improves dough and bread properties.Scope and approachThis review examines the effects of enzymes, emulsifiers, hydrocolloids, and oxidants on the properties of whole wheat bread and dough, with particular attention to effects on loaf volume and hardness. Wheat gluten and other plant materials are also discussed. Gaps in the research into whole wheat bread are identified, and future research needs are recommended.Key findings and conclusionsXylanase reduces the water absorption of whole wheat flour and increases loaf volume and crumb softness by hydrolyzing ararbinoxylans. α-amylase can be beneficial under certain conditions. Phytase may activate endogenous α-amylase. G4-amylase is promising but needs validation by further research on its effect on loaf volume, crumb hardness, and staling. Vital wheat gluten overcomes many of the challenges of whole wheat bread production and is found in the majority of commercial whole wheat breads. Emulsifiers DATEM and SSL can improve the volume, texture and staling profile of whole wheat bread. Several types of improvers are generally needed in combination to provide the greatest improvement to whole wheat dough and bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号