首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
硬脆材料微磨削表面形成机理试验研究   总被引:9,自引:0,他引:9  
微磨削作为微尺度硬脆材料元器件的一种重要加工方法越来越受到重视,分析硬脆材料微磨削材料去除机理、提出其应为脆性去除与延性去除的综合作用,并就硬脆材料微磨削中材料去除过程与传统磨削方式的不同建立微磨削表面形成模型。为揭示硬脆材料微磨削过程的表面形成机理,验证所提出的微磨削未变形切屑厚度hm与微磨削表面粗糙度Ra计算模型的科学性和准确性,针对钠钙玻璃这一典型硬脆材料设计了正交微磨削试验,就试验结果进行硬脆材料微磨削表面形貌分析,讨论硬脆材料微磨削表面影响因素以及影响规律。基于试验数据结果对所建立微磨削模型的科学性进行了验证,并通过试验获得了微磨削后表面粗糙度Ra从78 nm至0.98 μm的一系列表面,为硬脆材料微磨削表面形成机理研究提供了理论参考与试验依据。  相似文献   

2.
分析硬脆材料微磨削表面形成机理并建立了微磨削槽磨未变形切屑厚度hm数学模型,引入微尺度效应系数Md、延性域系数与延-脆性域系数ζ0与ζ1,针对硬脆材料特性提出微磨削延性域,延-脆性域复合临界条件模型。基于精密微磨削机床进行钠钙玻璃与单晶硅这两种典型材料的微尺度槽磨磨削试验,通过对试验结果分析得出两种材料微磨削表面裂纹变化规律。基于实际试验数据结果对提出的硬脆材料微磨削复合临界条件模型进行验证,证明了所提出模型的科学性。分别给出钠钙玻璃与单晶硅的延性域与延-脆性域微磨削加工参数a0与a1,为硬脆材料微磨削延性域临界磨削条件研究提供了理论参考与试验依据。  相似文献   

3.
This paper proposes a model to predict the material removal mode in soda-lime glass micro-grinding. This model defines material removal process to three stages which conclude ductile type, ductile-brittle type and brittle type by the quantization of undeformed chip thickness h m . The model for computing undeformed chip thickness in micro-grinding has been built considering tool topography, grit distribution and size effect in this paper. Micro-grinding experiments with different cutting depth on soda-lime glass have been designed and conducted. From experiment results, it was found that the edge crack length tends to have a wide range with different h m . Three types of chip have been investigated in results, and coolant has been verified to be an important factor to soda-lime glass ductile-regime micro-grinding. Critical depths of soda-lime glass micro-grinding have been found to be 2 and 5 nm, grinding forces in experiment provide the proof to predictive model proposed by this paper.  相似文献   

4.
针对硬脆材料钠钙玻璃进行了一系列的微尺度磨削试验研究,主要探讨不同磨削因素对工件加工表面质量的影响。从理论上探讨微尺度磨削的加工机理,研究微磨削过程中的最大未变形切屑厚度、工件的弹性恢复等对加工过程的影响。根据微尺度磨削加工的特点,选用不同的加工参数对钠钙玻璃材料进行正交试验和单因素试验,得到微磨削加工后工件表面粗糙度变化的一般规律。针对200号与500号两种磨粒微磨棒进行试验研究,得出不同加工条件与工件表面粗糙度的关系,进而确定不同加工参数对表面质量的影响规律。  相似文献   

5.
The micro-grinding of complex meso/micro-components of hard and brittle materials have attracted much attention in recent years. However, little related knowledge was accumulated, and there is a lack of quantitative evaluation of edge chipping damage, which is a major drawback. A theoretical model was established to further analyze the material removal mechanism under the action of single grain, considering the pressure phase transition, dislocation nucleation, and crack growth. An evaluation factor Fr of edge chipping damage was proposed to provide a reference for evaluating micro-grinding quality. Besides, the theoretical results were verified using the nano-scratch test. The experimental results proved that the proposed evaluation factor was an efficient tool to describe and predict micro-grinding quality.  相似文献   

6.
Brittle material removal fraction (BRF) is defined as the area fraction of brittle material removed on machined surface. In the present study, a novel theoretical model of BRF was proposed based on indentation profile caused by intersecting of lateral cracks. The proposed model is related to surface roughness and the subsurface damage (SSD) depth of optical glass during precision grinding. To investigate the indentation profile, indentation tests of K9 optical glass were conducted using single random-shape diamond grains. The experimental results indicate that the indentation profile is an exponent function. To verify the proposed BRF model, BRF, surface roughness and SSD depth of K9 optical glasses were investigated by a series of grinding experiments with different cutting depths. The experimental results show that BRF is dependent on surface roughness and SSD depth. The relationship between BRF, surface roughness and SSD depth is in good accordance with the proposed theoretical model. The proposed BRF model is a reasonable approach for estimating surface roughness and SSD depth during precision grinding of optical glass.  相似文献   

7.
Predictive Modeling of Surface Roughness in Grinding of Ceramics   总被引:1,自引:0,他引:1  
The surface roughness represents the quality of ground surface since irregularities on the surface may form nucleation for cracks or corrosion and thus degrade the mechanical properties of the component. The surface generation mechanism in grinding of ceramic materials could behave as a mixture of plastic flow and brittle fracture, while the extent of the mixture hinges upon certain process parameters and material properties. The resulting surface profile can be distinctively different from these two mechanisms. In this article, a physics-based model is proposed to predict the surface roughness in grinding of ceramic materials considering the combined effect of brittle and ductile material removal. The random distribution of cutting edges is first described by a Rayleigh probability function. Afterwards, surface profile generated by brittle mode grinding is characterized via indentation mechanics approach. Last, the surface roughness is modeled through a probabilistic analysis of ductile and brittle generated surface profile. The model expresses the surface finish as a function of the wheel microstructure, the process conditions, and the material properties. The predictions are compared with experimental results from grinding of silicon carbide and silicon nitride workpieces (SiC and Si3N4, respectively) using a diamond wheel.  相似文献   

8.
Micro-grinding using micro-tools has become very prevalent due to the miniaturization of products with increased process requirements. Moreover, this process provides an edge over other competitive processes, especially as a final process step. The quality of the part produced by the micro-scale grinding process can be influenced by various factors, particularly by the induced mechanical forces. Therefore, predictive model of cutting force can provide guidance for further development and optimization of the process. Although there has been a lot of a research conducted on conventional grinding, little knowledge has been accumulated on micro-scale grinding due to the fact that it is an emerging field of research. The early grinding models developed are mostly based on parameters such as wheel and workpiece velocity, depth of cut and grit size of the grinding wheel. Those early models narrated that the grits penetrate and cut the material from the workpiece surface with the generated grinding forces proportional to the removed material. However, those models may not be appropriate for micro-scale grinding due to the mode of material removal and the method of contact between surfaces which is different from the macro-scale method. In addition to that, due to the small feed rate used in brittle material machining, ploughing force needs to be considered intensively in addition to the chip formation force. Therefore, a new analytical model has been proposed to evaluate cutting forces of micro-grinding process based on the process configuration, workpiece material properties and micro-grinding tool topography. The size effect of micro-machining has been carefully considered in this proposed model. Therefore, this approach allows the derivation of cutting force comprising of both the chip formation force and ploughing force. Experimental investigation in a micro-grinding configuration has been pursued to validate the proposed predictive model. The estimated cutting force showed a good correlation with the experimental values except for higher depth of cut and lower feed rate. Additionally, paired T test has been performed to quantify the difference between the predicted and experimental results.  相似文献   

9.
This paper presents a micro-grinding experiment on AISI 1020 steel and Ti-6Al-4V to study micro-grinding principle and the change rule of the force and surface with different grinding parameters. A novel micro shaft grinding tool is fabricated by cold sprayed with CBN grains, the manufacturing is carried out on a desktop micro machine developed by NEU. Influences caused by particle size on surface quality has been discussed, it has been tested that low surface roughness could be achieved on 3000 particle size of micro shaft grinding tool, the roughness of AISI 1020 steel accomplished in the experiment is about 0.086 μm. Measured micro-grinding force of Ti-6Al-4V decreases with the increasing spindle speed and the decreasing cutting depth. The surface roughness decreases with the increasing spindle speed and the decreasing feed rate. The minimum surface roughness is 325 nm with the spindle speed of 48000 r/min and the feed rate of 20 μm/s.  相似文献   

10.
超声磨削加工在难加工材料领域得到广泛应用,超声辅助磨削过程中,超声振动参数对磨削后的表面微观形貌具有重要影响,因此,为了在加工前对超声加工后的表面微观形貌进行预测,以优化加工参数。提出一种考虑耕犁的超声磨削表面微观形貌建模与预测方法。假设磨粒为球形,磨粒直径与间距服从高斯分布,给出砂轮形貌的数值生成方法;根据超声磨削运动学,建立考虑磨粒实时切削深度与耕犁影响的三维运动轨迹方程;在此基础上,提出超声磨削表面微观形貌生成的区域逼近求解算法,进而给出超声磨削表面微观形貌生成模型,模拟出超声磨削的三维表面微观形貌。通过试验分别从表面微观形貌的轨迹纹理、表面粗糙度数值两个方面对超声磨削表面微观形貌的模型的正确性进行了验证。  相似文献   

11.
Ceramic matrix composites of type C/SiC with superior properties have got increasing importance in many fields of industry, especially in the aerospace area. Rotary ultrasonic machining is a high-efficiency processing technology for these advanced materials. However, due to the inhomogeneity and anisotropy of these composites, the machining process is still challenging to achieve desired result due to the lack of understanding and control of material removal mechanism. In this paper, the maximum depth of penetration by diamond abrasives in workpiece material is proposed to quantify the material removal modes. A model of maximum depth of penetration for rotary ultrasonic face machining (RUFM) was developed based on the indentation theory. An experimental RUFM of C/SiC was carried out, and it revealed that the material removal mechanism transited from ductile mode to brittle fracture mode with the decrease of cutting speed. Similar transition was observed with the increase of feed rate and cutting depth. By comparing the measured cutting force with simulation, a critical depth of penetration for the cutting mechanism transition was defined at about 4 μm. The processed surface topography was studied, and the transition of material removal modes was identified by the sudden change of the 3D surface roughness map at the critical penetration depth. Thus, the maximum depth of penetration model developed in this paper can be applied to identify the ductile or brittle fracture removal mode in RUFM of C/SiC using the cutting parameters. This allows controlling the material removal mechanism to achieve desired machining efficiency and quality.  相似文献   

12.
金刚石线锯横向超声振动切割SiC单晶表面 粗糙度预测*   总被引:2,自引:0,他引:2  
把横向超声振动应用到金刚石线锯切割硬脆材料加工中,基于冲量原理分析了线锯横截面上不同位置处金刚石磨粒对工件的法向锯切力。应用压痕断裂力学理论,定量分析了在法向和切向载荷共同作用下磨粒下方中位/横向裂纹扩展的长度和深度。研究了振动磨粒在工件上间歇加载和卸载使横向裂纹优先扩展并抑制中位裂纹扩展的屏蔽效应。建立了横向振动线锯切割硬脆材料时线锯横截面不同位置处磨粒的材料去除模式模型,得到了横向振动线锯切割硬脆材料晶片表面粗糙度的预测公式。以SiC单晶为切割对象,进行普通线锯和横向超声振动线锯切割对比试验,测定线锯的锯切力和晶片表面粗糙度,并对表面形貌进行观察。结果表明,横向超声振动线锯切割SiC是以脆性去除为主塑性去除为辅的混合材料去除模式;同等试验条件下,超声振动线锯切割能使晶片表面粗糙度降低25.7%。表面粗糙度测试结果与理论预测具有较好的一致性。  相似文献   

13.
研究了三种典型的碳化硅光学材料CVD SiC、HP SiC以及RB SiC的材料去除机理与可抛光性,并对其进行了超光滑抛光试验。在分析各种材料制备方法与材料特性的基础上,通过选择合理的抛光工艺参数,均获得了表面粗糙度优于Rq=2nm(采样面积为0.71mm×0.53mm)的超光滑表面。试验结果表明:研磨过程中,三种碳化硅光学材料均以脆性断裂的方式去除材料,加工表面存在着裂纹以及材料脱落留下的缺陷;抛光过程中,CVD SiC主要以塑性划痕的方式去除材料,决定表面粗糙度的主要因素为表面微观划痕的深度;HP SiC同时以塑性划痕与晶粒脱落的形式去除材料,决定表面粗糙度的主要因素为碳化硅颗粒大小以及颗粒之间微孔的尺寸;RB SiC为多组分材料,决定其表面粗糙度的主要因素为RB SiC三种组分之间的去除率差异导致的高差。

  相似文献   

14.
单层钎焊金刚石砂轮作为一种新型的磨削工具,具有磨粒固结强度高、磨粒出露大、容屑空间大等优点,比较适合高效率大切深的强力磨削,然而这种工具对高性能的脆性材料的精密磨削却比较困难。本文通过两种精密的修整工艺,使得加工表面质量大大提高。通过观察砂轮磨粒形态的变化可知,磨粒在修整过程中存在有磨损钝化、破碎、表面粘附等现象;通过对砂轮轮廓的激光测量可知,砂轮的磨粒等高性在修整过程中是明显改善的。通过修整磨粒粒径300μm的钎焊砂轮磨削氧化锆的表面粗糙度达到了Ra0.2μm。  相似文献   

15.
铝合金Al6061微尺度磨削力热特性试验分析   总被引:3,自引:0,他引:3  
微磨削加工是微尺度加工领域的一种重要的加工方法。基于铝合金Al6061建立微磨削力热特性的理论模型。设计铝合金Al6061材料的微磨削单因素试验,分析试验结果得出不同磨削参数对微磨削力和磨削温度影响规律。针对不同的磨削深度,研究微磨削表面温度和表面下不同深度位置的温度分布情况,并对加工表面进行热烧伤检测。根据试验数据结果对所建立微磨削力和微磨削温度的理论模型的准确性进行了验证,并通过试验测量得到微磨削后最高表面温度为78.5 ℃。试验研究结果也为进一步研究零件表面完整性和提高零件表面质量提供重要依据。  相似文献   

16.
以材料的去除率和表面粗糙度为评价指标设计对比实验,验证了硬脆材料互抛抛光的可行性,得到了抛光盘转速对硬脆材料互抛的影响趋势和大小。实验结果表明:当抛光压力为48 265 Pa(7 psi)、抛光盘转速为70 r/min时,自配抛光液互抛的材料去除率为672.1 nm/min,表面粗糙度为4.9 nm,与传统化学机械抛光方式的抛光效果相近,验证了硬脆材料同质互抛方式是完全可行的;互抛抛光液中可不添加磨料,这改进了传统抛光液的成分;采用抛光液互抛时,材料去除率随着抛光盘转速的增大呈现先增大后减小的趋势,硅片的表面粗糙度随着抛光盘转速的增大呈先减小后增大的趋势。  相似文献   

17.
Alumina (Al2O3) ceramic has been widely used in various fields, but it has certain difficulties in machining as a hard and brittle material. While laser-assisted grinding (LAG), an alternative and novel method for fabrication of alumina ceramic, can utilize laser beam to locally heat the workpiece before the ceramic is removed, thereby reducing fracture toughness and keeping the surface integrity. In this paper, a thermal model is established to study and understand the processing mechanism of the LAG process. Meanwhile, an orthogonal experiment is designed and implemented to optimize the grinding process. Then, by analyzing the surface topography, the advantages of LAG are strongly proved. It is found that the temperature modelling results matches experimental results well. The processing parameter that has greatest impact on surface roughness is laser power, followed by grinding depth and wheel speed, and feeding speed at last. The optimal surface roughness value can be obtained by certain processing parameters. Also, compared to conventional grinding (CG), the removal method of alumina ceramics alters from brittle fracture to plastic fracture. Overall, this study clearly elucidates that LAG of alumina ceramic is a very promising machining method, and can be potentially utilized for various industrial, aerospace and automobile applications.  相似文献   

18.
Grinding wheels consist of abrasive grains, bonding materials and porous, which are specified by five factors; type of grain, size of grain, bonding material, bonding strength and grain concentration or volume fraction of grain. The grain size is represented by the mean diameter/radius of grains. However, the abrasives in a grinding wheel are randomly scraggly in size and shape. There is no particular aspect to regulate the variation in grain size. This paper addresses, via a theoretical analysis on the distribution of grain size, the average volume of a grain, the number of grains contained in a specific volume of the wheel, the number and protrusion distribution of grains exposed in a wheel working surface and the fraction of effective grain, when the grain size varies. The effect on the resultant finished surface roughness is also discussed.  相似文献   

19.
This paper focuses on the mechanism of high-speed grinding to achieve quality and efficiency for ceramics. The criterion of the brittle–ductile removal transition of ceramics is calculated and analyzed. The effects of the wheel velocity on the specific grinding forces, energy, and specific material removal rates were investigated. The influence of the wheel velocity on the surface integrity was studied in the terms of surface roughness by a 3D optical profilometer, scanning electron microscopy, respectively. The ductile removal mechanism of brittle material was validated experimentally. High quality and efficiency of grinding for SiC can been attained with high-speed grinding due to the understanding of the characteristics and mechanism for ductile grinding of brittle materials with high-speed grinding. Furthermore, based on the high-performance grinding mechanism, reasonable definitions on high-speed grinding are proposed.  相似文献   

20.
如何合理有效地评价光学晶体微结构表面质量,是目前光学元件精密制造与应用领域面临的重要问题。基于分形理论,采用三维和二维盒计数方法对蓝宝石单晶磨削表面形貌进行了分析,结果表明磨削表面的三维分形维数Ds与表面粗糙度呈反比关系,而且三维分形维数越高表面纹理越精细,三维分形维数越低表面缺陷越多。磨削表面截面轮廓的二维分形维数DL分布规律可以反映材料去除方式的变化。当二维分形维数DL沿磨削方向呈强对称分布时,该磨削表面为延性域去除;若呈弱对称性或不规则分布,则该磨削表面为脆性域去除。研究证实了分形方法不仅可用于综合表征蓝宝石磨削表面形貌,还可用于揭示蓝宝石磨削表面的材料去除机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号