首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
地铁减振型无砟轨道结构中,CA砂浆层位于轨道板和隔振垫之间,起着支承、传载和调整的功能。由于隔振垫的存在,CA砂浆层极易发生破坏,因此需要全面地研究轨道结构参数对CA砂浆的应力影响规律。基于弹性地基梁体模型,研究轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆应力的影响规律,并通过应力匹配图得到合理的轨道结构参数匹配。得到的结论是CA砂浆弹性模量是对CA砂浆应力影响最敏感的参数;轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆最大拉应力的影响远大于对CA砂浆最大压应力的影响;通过应力匹配图,提出较为合理的轨道结构参数匹配:轨道板使用C80等级的混凝土、CA砂浆取中低弹模3 000 MPa、隔振垫刚度取0.04 N/mm~3、轨道板长度取4.097 m。  相似文献   

2.
为进一步明确无砟轨道部件伤损对轨道结构受力和行车安全的影响,需要对典型病害类型展开现场动力学试验。本次现场试验主要针对框架板式轨道CA砂浆伤损进行动力测试试验,从而分析CA砂浆伤损(碎裂、掉块等)修复前后钢轨及轨道板的动力学响应,评估CA砂浆伤损对轨道结构受力和行车安全的影响,以及针对现场CA砂浆碎裂等病害的现有修复技术加以评估。  相似文献   

3.
CA砂浆层掉块破坏是无砟轨道结构运营过程中最突出的病害之一,其破坏程度对无砟轨道结构运营的安全性与适用性具有重要影响。通过采用修正Burgers模型转换Prony级数表征CA砂浆的黏弹性,建立CRTSⅠ型板式无砟轨道结构三维有限元模型,通过模拟CA砂浆层在板端和板中不同区域薄层掉块,研究车轮荷载作用下不同掉块位置、不同掉块大小对无砟轨道结构动力特性和结构位移的影响,分析掉块处轨道结构损伤演变规律和趋势,给出破坏界限建议值,为无砟轨道结构的养护维修提供理论依据和指导。研究结果表明:无论板端还是板中掉块,CA砂浆层破坏造成轨道板垂向加速度、垂向位移和纵向拉应力增幅明显,CA砂浆层掉块边缘位置的压应力急剧增大,而底座板垂向位移及受力逐渐减小;车轮荷载作用下,CA砂浆层板端薄层掉块达到0.912 5 m,板中掉块达到1.25 m时,轨道板的垂向振动和CA砂浆的压应力将会显著增大,应及时对轨道结构进行检修,避免轨道结构破坏快速扩展。  相似文献   

4.
无砟轨道在长期列车荷载与外部环境的作用下其结构中CA砂浆层会出现空洞、脱空等损伤病害,这些损伤病害对铁路运营的安全产生巨大了的威胁.因此,对无砟轨道CA砂浆层的病害的防治与检测显得尤为重要.通过对多种无损检测方法的比对择优,采用探地雷达的探测方式,基于时域有限差分法编制Matlab程序,对地电模型进行三维正演模拟,确定探地雷达技术的可行性,而后建立无砟轨道板物理模型,在CA砂浆层设置不同大小的空洞病害,并使用探地雷达对模型进行探测,验证技术的可行性.研究结果表明:轨道板中分布的钢筋网对无砟轨道CA砂浆层病害的检测有着不同程度的影响;设置正反探测路线,能够准确识别出处于钢筋网环境下的病害的位置;随着空洞直径的逐步缩小,空洞的信号特征成减弱趋势.  相似文献   

5.
CA砂浆脱空对框架型轨道板翘曲的影响分析   总被引:2,自引:2,他引:0  
CA砂浆填充层作为框架型板式轨道关键结构层,长期暴露于自然环境中,受列车荷载冲击、温度循环以及水的侵害等作用,砂浆层与轨道板间易产生脱空,劣化轨道结构受力状态。基于无砟轨道弹性地基梁体模型,分析了正常状态和砂浆层与轨道板间出现脱空时框架型板式轨道在温度梯度荷载作用下的受力情况,并针对板端横向全部脱空和板边纵向全部脱空两种常见脱空形式进行分析。结果表明,较低的砂浆弹性模量可减小轨道板翘曲和缓解列车荷载冲击作用;对于脱空状态,在正温度梯度作用下,轨道板受力和板角翘曲变形受脱空程度影响较大,而对砂浆层受力影响较小;在负温度梯度作用下,轨道板和砂浆层受力状态受脱空程度影响均不明显。  相似文献   

6.
我国高速铁路无砟轨道无缝线路发展迅速,但随着列车的运营,轨道板与CA砂浆层之间常会出现离缝,这将对无砟轨道的长期服役性能产生一定的影响。以高速铁路多跨简支梁上CRTS Ⅰ型板为例进行分析,研究板边、板端、板角、板中4种典型CA砂浆离缝病害对轨道几何形位及对无缝线路受力变形情况的影响。研究结果表明:离缝病害作用下,随着桥轨间温差变大,轨道水平偏差增幅较大,轨道高低偏差最值偏大,并且板端病害对离缝区平顺性影响大。在温度荷载作用下含病害的轨道结构伸缩受力更加明显,尤其体现轨道板、底座板上,其中板边位置的病害受力变形最为明显。在列车荷载作用下在离缝病害区域轨道结构挠曲受力情况变化较大,其中板角及板端病害影响大。根据计算结果建议在无缝线路养护维修时着重检查轨道板及底座板下表面的情况,及要注意检修钢轨正下方病害情况。  相似文献   

7.
CRTSⅡ型板式无砟轨道在高温季节起拱、胀板,危害运营安全。基于运营及养护维修实践,分析得出温度荷载是轨道板胀板的主要因素,其中整体升温荷载引起结构纵向伸缩变形,温度梯度荷载引起轨道板翘曲变形。另外,轨道板与CA砂浆层间受到水、温度荷载、列车荷载等外部因素作用,导致结构分层,轨道板与底座板不能共同受力,削弱了纵连轨道结构体系的整体抗压刚度、竖向约束和稳定性能,是胀板病害进一步发展恶化的次要因素。为了有效防止CRTSⅡ型板式无砟轨道胀板,在不破坏设计结构的前提下,提出轨道板预先植筋加固处理的整治措施,并在实践中取得了良好的效果。后续可根据胀板机理,进一步开展隔热涂层、CA砂浆改性等方面的研究。  相似文献   

8.
基于车辆-轨道单元的无砟轨道动力特性有限元分析   总被引:6,自引:0,他引:6  
张斌  雷晓燕 《铁道学报》2011,33(7):78-85
根据CRTSⅡ型无砟轨道系统结构特点,建立列车-轨道-路基耦合系统动力分析模型,提出一种包含钢轨、扣件、轨下垫板、预制轨道板、CA砂浆层、混凝土支承层及路基的无砟轨道单元,并推导该单元刚度矩阵、质量矩阵和阻尼矩阵。运用Lagrange方程建立高速列车通过时无砟轨道动力特性分析的有限元数值方程。结合实例,研究无砟轨道轨下垫板、CA砂浆层、路基等结构参数对轨道振动的影响,并对有砟轨道与无砟轨道连接段动力特性进行分析,分析时考虑列车速度、轨道基础刚度等影响因素。计算结果表明:无砟轨道结构参数合理取值与刚度合理匹配可显著提高轨道整体工作性能;连接段轨道基础刚度变化对钢轨垂向加速度和轮轨作用力均有影响,其影响随列车速度提高而增大;连接段采取轨道刚度渐变过渡措施,可明显降低车辆-轨道结构冲击振动,有效改善行车品质。  相似文献   

9.
车辆滚动循环载荷作用下CA砂浆层常发生劣化以致失效,为真实反映CA砂浆层在整体系统中的作用特性,建立车辆-轨道-路基-地基耦合系统,分析当CA砂浆层发生不同程度劣化时轨道子系统各层的垂向动力响应变化情况。仿真与信号分析结果表明,CA砂浆层服役性能的优劣影响轨道子系统的载荷传递性能,且劣化长度过长时会改变轨道板-CA砂浆层耦合层的模态特性,导致其各阶次固有频率前移更易发生共振,砂浆层约束能力的减弱叠加共振影响致使轨道板垂向位移在动态荷载作用下超过《高速铁路工程动态验收技术规范》对轨道结构动力性能评判标准的规定限值,轨道服役性能下降。  相似文献   

10.
为研究CRTSI型轨道板及CA砂浆层在列车疲劳荷载作用下的疲劳损伤,按照轮轨力的正态分布规律及疲劳荷载编谱方法中的单参数计数法将列车荷载简化为2种疲劳荷载谱,通过建立的弹性地基梁-体模型计算了列车疲劳荷载作用下轨道板及CA砂浆应力值,采用Miner线性准则及以应力为基础的疲劳寿命计算方法,分别计算了轨道板混凝土及CA砂浆在60年服役期内的疲劳损伤。理论分析结果表明:仅考虑列车疲劳荷载作用时,轨道板混凝土及CA砂浆材料在60年服役期不会发生疲劳破坏;不同的疲劳荷载谱对轨道板及CA砂浆的疲劳损伤几乎没有影响。  相似文献   

11.
层间剪切破坏是CRTSⅡ型板式无砟轨道的主要伤损形式之一。根据CRTSⅡ型板式无砟轨道结构,建立钢轨、轨道板、CA砂浆层、支承层、宽窄接缝三维有限元模型,采用双线性黏结滑移模型模拟CA砂浆层与轨道板间的黏结关系,根据轴距和车辆定距确定轮载与制动力加载位置,研究制动力作用下,不同制动力率、界面参数下轨道板和CA砂浆层间剪切破坏的影响机理。结果表明,制动力率对于界面剪切应力与界面伤损分布影响较小,界面的黏结性能对于制动力作用下的界面剪切应力与界面伤损分布影响较大;制动力对扣件四周的轨道板与CA砂浆界面黏结破坏作用较大,对于板中间位置界面黏结基本无影响;相同制动力作用下,起始伤损位移越小,界面越容易发生伤损;过大的剪切刚度会对层间界面的黏结产生不利影响。  相似文献   

12.
无砟轨道早期病害是影响其长期服役寿命的重要因素。应用 CRTSⅡ型板式轨道有限元计算模型,对轨道板铺设过程中的受力特性进行了分析。计算结果表明,在轨道板起吊和精调过程中,其板面最大拉应力可能发生超过或接近混凝土抗拉强度的情况,将会引起横向裂纹;轨道板灌注 CA 砂浆层后,纵连前板角区域温度翘曲应力超过 CA 砂浆层抗压强度,容易出现离缝;轨道板纵连后温度翘曲应力则大为降低。加强起吊过程控制、调整精调千斤顶位置与及时进行轨道板纵连是控制CRTSⅡ型板式轨道早期病害的重要手段。  相似文献   

13.
为探明高速铁路长联大跨度连续梁桥上CRTSII型板式无砟轨道制挠工况下受力特性,选取某高铁跨径(60+3×100+60)m的连续梁桥为工程实例,建立考虑梁轨各构件的空间有限元模型,计算分析单侧制挠工况下各层轨道结构纵向附加力分布规律;分析轨道关键结构参数变化对其纵向附加力影响规律,研究结果表明:在单侧制挠工况下,钢轨纵向附加力最大值出现位置随着加载区域的变化而变化,最大附加拉力及附加压力分别出现在加载区域后端点、前端点;轨道板和底座板纵向附加力分布趋势一致;3层轨道结构中,轨道板在制挠工况下纵向附加力最大;连续梁固定支座右侧300 m范围加载制动力为轨道结构相对最不利工况;道床板伸缩刚度以及滑动层摩擦因数对轨道结构附加力影响较大;CA砂浆层对轨道结构附加力影响较小;建议增大大跨连续梁两端无砟轨道结构强度,改进CRTSII无砟轨道CA砂浆层的设置。  相似文献   

14.
CRTSⅠ型板式无砟轨道CA砂浆疲劳寿命分析   总被引:6,自引:5,他引:1  
根据CRTSⅠ型板式无砟轨道的结构特征与受力特征,将钢轨假设为点支撑梁,扣件和基础的弹性假设为弹簧,轨道板、CA砂浆和底座板分别假设为实体,建立CRTSⅠ型板式无砟轨道的有限元模型,以Palmgren-Miner线性疲劳累计损伤准则为基础,采用全寿命分析方法对CA砂浆在不同列车荷载作用下的疲劳寿命进行分析,得到CA砂浆层的疲劳寿命分布和危险点的寿命值。  相似文献   

15.
运营过程中发现CRTSⅡ型轨道板边角位置与砂浆层之间存在离缝,而现有研究除考虑宽窄接缝破损外,均未涉及宽窄接缝处上拱变形的情况。本文根据推板试验结果对砂浆层与轨道板的水平连接施加不同的约束方式,分析轨道板上拱的成因及其对钢轨变形的影响。研究结果表明:轨道板上拱主要由CA砂浆层的水平约束刚度不均匀引起;当轨道板各层温度均高于施工锁定温度处于升温状态时,轨道板的最大上拱变形纵向上出现在宽窄接缝处,横向上出现在板中;轨道板变形随着离缝区域的增大逐渐趋于平稳;变形传递系数在正温度作用下为0.63,在负温度作用下为0.31。  相似文献   

16.
对波数有限元方法进行验证后,结合高速铁路设计规范,建立CRTSⅡ型板式无砟轨道的波数有限元模型,讨论轨道结构各部件弹性模量/刚度变化对轨道结构整体刚度的影响,进行轨道刚度对关键参数的敏感性分析,得到以下主要结论:无砟轨道刚度在低频段和高频段有不同的特征。在低频段(0~第三阶动刚度峰值频率),出现多个共振引起的波谷值和波峰值;在高频段(第三阶动刚度峰值频率~100 Hz),轨道刚度随着频率的增加而减小。轨道各部件中,扣件的刚度对轨道刚度的影响最明显,但其对轨道低频段内的共振频率影响不大;基床底层和地基弹性模量仅影响低频段的轨道刚度,共振频率和轨道静刚度随着弹性模量的增加而增大,最大轨道动刚度的变化不明显;基床表层和CA砂浆弹性模量对轨道刚度的影响较小。  相似文献   

17.
以下部结构实测整体或局部振动模态参数为目标值,采用模型修正技术和优化计算方法识别墩身刚度和基础约束刚度参数,进而计算桥墩横桥向和顺桥向水平线刚度。分析线刚度对桥墩各类病害的灵敏度,建立线刚度指数的概念,在此基础上提出下部结构服役性能评估准则和评估流程。对某高速铁路桥墩进行现场试验,并依据设计规范和本文所提出的评估准则对其工作状态进行评估。桥墩评估状态与现场勘查结果相符,从而证明本文所提评估方法的准确性和可靠性。  相似文献   

18.
建立了包含CRTSⅡ型轨道板与砂浆层离缝的无砟轨道结构和CRH2型3节车结构的车辆-轨道空间耦合动力学模型,模拟在不同轨道板与砂浆层离缝量条件下钢轨和轨道板动位移以及轮轨垂向力的变化情况,分析离缝对轨道动力响应的影响以及列车通过离缝区域时轨道变形以及回弹情况。结果表明:在通常状况下,车轮经过离缝区域时与同一节车车体中部通过时相比,钢轨与轨道板动位移存在较大差值,理论上可视为有载荷与无载荷状态的差值。采取在车体中部加装无载荷检测设备,将其检测结果与综合检测列车检测数据对比从而间接寻找轨道板离缝较大处所的方法,理论上是可行的。  相似文献   

19.
为研究城市轨道交通地铁线路减振型无砟轨道的使用对CA砂浆力学性能的要求,基于有限元理论,建立减振型单元板式无砟轨道的梁-体模型。一方面,研究减振垫的刚度对CA砂浆的变形和受力影响;另一方面,研究CA砂浆自身的弹性模量对其本身变形和受力的影响。研究结果表明:由于减振垫自身刚度较小的缘故,导致CA砂浆承受较大拉应力而存在受拉破坏的危险,随减振垫刚度的减小,CA砂浆和上部结构均会出现较大变形,进而影响轨道平顺性和行车安全;随CA砂浆自身弹性模量的增大,CA砂浆层所受拉应力随之增大,因此在配制高弹性模量的CA砂浆材料的同时必须保证其抗拉强度能够满足CA砂浆抗拉的要求。  相似文献   

20.
研究目的:CRTSⅡ型轨道板在夏季高温天气易产生上拱变形,引起轨道板和砂浆层离缝及板间接缝伤损等病害,导致板长波段的轨道不平顺恶化,严重影响行车的舒适性和安全性。由于固定监测缺乏普适性,且成本较高,因此基于动态轨道不平顺检测数据间接监控轨道板状态具有一定的优势,本文研究提出细化轨道不平顺波长进行状态评估的方法,可有效地识别出存在轨道板变形伤损区段,较原有的评价方法在效率和准确性方面均有很大提高。研究结论:(1)由轨道不平顺时序波形、历史演变和频谱方法分析表明,轨道板拱起影响波长在5~6.5 m之间,部分高低峰值呈逐年增加趋势,说明部分结构状态逐年恶化;(2)通过有限元建模分析,运用相关系数和曲线拟合等方法,研究高低峰值和气温的关联关系,结果表明轨面高低峰值随温度的变化特性可以反映轨道板变形受温度影响的变化特性:轨道板变形与温度具有较强的相关性,呈现非线性增加特性;(3)设计滤波器提取轨道不平顺中的轨道板波长特征,进行合理分段处理,定义为轨道板状态指数,并根据统计特征得到评价阈值范围在0.5时,经地面复核测试可以识别出约为70%的病害位置;(4)本研究成果可为高速铁路轨道板结构状态评价和运营维护提供技术、理论和实践支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号