首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a 5-d controlled internal drug-release (CIDR)-Cosynch resynchronization protocol, the objective of this study was to determine the effect of the initial GnRH injection on pregnancy per artificial insemination (P/AI) to the second artificial insemination in lactating Holstein dairy cows. On 37 ± 3 d (mean ± standard deviation) after the first artificial insemination, and upon nonpregnancy diagnosis (d 0 of the experiment), lactating cows eligible for a second artificial insemination (n = 429) were enrolled in a 5-d CIDR-Cosynch protocol. On d 0, all cows received a CIDR insert and were assigned randomly to receive the initial GnRH injection (GnRH; n = 226) of the protocol or no-GnRH (n = 203). Blood samples were collected from a sub-group of cows (n = 184) on d 0 and analyzed for progesterone (P4) concentration. On d 5, CIDR inserts were removed, and all cows received 1 injection of PGF. On d 6 and 7, cows were observed once daily by employees for tail-chalk removal, and cows detected in estrus on d 6 or 7 received artificial insemination that day (EDAI), and did not receive the final GnRH injection. The remaining cows not detected in estrus by d 8 received GnRH and timed artificial insemination (TAI). Pregnancy status was confirmed by transrectal palpation of uterine contents at 37 ± 3 d (mean ± standard deviation) after the second artificial insemination. Eliminating the initial GnRH injection had no effect on P/AI compared with cows receiving GnRH (27 vs. 21%), respectively. Similarly, method of insemination (EDAI vs. TAI) and its interaction with treatment had no effect on P/AI. Primiparous cows had greater P/AI than multiparous cows (31 vs. 21%). Mean P4 concentrations (n = 184) at the initiation of the protocol did not differ between treatments (4.51 ± 0.35 ng/mL no-GnRH vs. 3.96 ± 0.34 ng/mL of GnRH). When P4 concentrations were categorized as high (≥1 ng/mL) or low (<1 ng/mL), P/AI tended to be greater for high P4 concentrations (n = 136) compared with low (n = 48) P4 concentrations (26 vs. 16%, respectively). No differences were observed in the proportion of cows with high or low P4 between treatments. Collectively, these results provide evidence that eliminating the initial GnRH in a 5-d CIDR-Cosynch resynchronization protocol for lactating dairy cows did not reduce P/AI in this study.  相似文献   

2.
《Journal of dairy science》2022,105(1):877-888
The aim of this study was to determine the association between occurrence and intensity of estrous expression with pregnancy success in recipient lactating dairy cows subjected to embryo transfer (ET). Two observational studies were conducted. Holstein cows were synchronized using the same timed ET protocol, based on estradiol and progesterone in both experiments. At 9 d after the end of the timed ET protocol only animals that had ovulated were implanted with a 7-d embryo [experiment 1 (Exp. 1); n = 1,401 ET events from 1,045 cows, and experiment 2 (Exp. 2); n = 1,147 ET events from 657 cows]. Embryos were produced in vivo (Exp. 1 and Exp. 2) and in vitro (only Exp. 2), then transferred to recipient cows as fresh or frozen-thawed. Pregnancy was confirmed at 29 and 58 d after the end of timed ET protocol. In Exp. 1, animals had their estrous expression monitored through a tail chalk applied on the tail head of the cows and evaluated daily for chalk removal (no estrus: 100% of chalk remaining; estrus: <50% of chalk remaining). In Exp. 2, cows were continuously monitored by a leg-mounted automated activity monitor. Estrous expression was quantified using the relative increase in physical activity at estrus in relation to the days before estrus. Estrous expression was classified as no estrus [<100% relative increase in activity (RI)], weak intensity (100–299% RI), and strong intensity (≥300% RI). Data were analyzed by analysis of variance using mixed linear regression models (GLIMMIX) in SAS (SAS Institute Inc.). A total of 65.2% (914/1,401) and 89.2% (1,019/1,142) of cows from Exp. 1 and Exp. 2, respectively, displayed estrus at the end of the ovulation synchronization protocol. In Exp. 1, cows expressing estrus before to ET had greater pregnancy per ET than those that did not [41.0 ± 2.3% (381/914) vs. 31.5 ± 2.9% (151/487), respectively]. Similarly, in Exp. 2, cows classified in the strong intensity group had greater pregnancy per ET compared with cows in the weak intensity and no estrus groups [41.3 ± 2.2% (213/571) vs. 32.7 ± 2.7% (115/353) vs. 11.3 ± 3.5% (26/218), respectively]. There was no effect of ET type on pregnancy per ET in Exp. 1. However, in Exp. 2, cows that received an in vivo-produced embryo, either fresh or frozen, had greater pregnancy per ET compared with cows that received in vitro-produced embryo. Cows receiving embryos in the early blastocyst and blastocyst stage had greater fertility compared with cows receiving embryos in the morula stage. There was an interaction between the occurrence of estrus and the stage of embryo development on pregnancy per ET, cows which displayed estrus and received a morula or early blastocyst had greater pregnancy per ET than cows that did not display estrus. In conclusion, the occurrence and the intensity of estrous expression improved pregnancy per ET in recipient lactating dairy cows and thus could be used as a tool to assist in the decision making of reproduction strategies in dairy farms.  相似文献   

3.
Our objective was to compare the AI submission rate and pregnancies per artificial insemination (P/AI) at first service of lactating Holstein cows submitted to a Double-Ovsynch protocol and timed artificial insemination (TAI) versus artificial insemination (AI) to a detected estrus after synchronization of estrus at a similar day in milk range. Lactating Holstein cows were randomly assigned to receive their first TAI after a Double-Ovsynch protocol (DO; n = 294) or to receive their first AI after a synchronized estrus (EST; n = 284). Pregnancy status was determined 33 ± 3 d after insemination and was reconfirmed 63 ± 3 d after insemination. Data were analyzed by ANOVA and logistic regression using the MIXED and GLIMMIX procedures of SAS (SAS Institute Inc., Cary, NC). By design, days in milk at first insemination did not differ between treatments (76.9 ± 0.2 vs. 76.7 ± 0.3 for DO vs. EST cows, respectively), but more DO cows were inseminated within 7 d after the end of the voluntary waiting period than EST cows (100.0 vs. 77.5%). Overall, DO cows had more P/AI than EST cows at both 33 d (49.0 vs. 38.6%) and 63 d (44.6 vs. 36.4%) after insemination, but pregnancy loss from 33 to 63 d after insemination did not differ between treatments. Primiparous cows had more P/AI than multiparous cows 33 and 63 d after insemination, but the treatment by parity interaction was not significant. Synchronization rate to the hormonal protocols was 85.3%, which did not differ between treatments; however, synchronized DO cows had more P/AI 33 d after insemination than synchronized EST cows (54.7 vs. 44.5%). In summary, submission of lactating Holstein cows to a Double-Ovsynch protocol and TAI for first insemination increased the percentage of cows inseminated within 7 d after the end of the voluntary waiting period and increased P/AI at 33 and 63 d after first insemination resulting in 64 and 58% more pregnant cows, respectively, than submission of cows for first AI after detection of estrus at a similar day in milk range. We conclude that, because the proportion of synchronized cows did not differ between treatments, DO cows had more P/AI than EST cows because of an intrinsic increase in fertility after submission to a fertility program.  相似文献   

4.
The objective of this experiment was to evaluate the reproductive performance and herd exit dynamics of dairy cows managed for first service with programs varying in method of submission for insemination and voluntary waiting period (VWP) duration. Holstein cows from a commercial farm in New York were randomly allocated to receive timed artificial insemination (TAI) after the Double-Ovsynch protocol (GnRH, 7 d later PGF, 3 d later GnRH, 7 d later GnRH, 7 d later PGF, 56 h later GnRH, and 16 to 18 h later TAI) at 60 ± 3 d in milk (DIM) (DO60 = 458), TAI after Double-Ovsynch at 88 ± 3 DIM (DO88 = 462), or a combination of AI at detected estrus (starting at 50 ± 3 d in milk) and TAI with the Presynch-Ovsynch protocol (PGF, 14 d later PGF, 12 d later GnRH, 7 d later PGF, 56 h later GnRH, and 16 to 18 h later TAI; PSOv = 450). Subsequent artificial insemination (AI) services were conducted at detected estrus or the Ovsynch protocol (32 ± 3 d after AI GnRH, 7 d later PGF, 56 h later GnRH, and 16 to 18 h later TAI) for cows not reinseminated at detected estrus. In a subgroup of cows, cyclicity (based on progesterone concentration), uterine health (vaginal discharge and uterine cytology), and BCS were evaluated at baseline (DO60 and DO88 = 33 ± 3 DIM; PSOv = 34 ± 3 DIM), beginning of the synchronization protocol (DO60 = 33 ± 3 DIM; DO88 = 61 ± 3 DIM; PSOv = 34 ± 3 DIM), and within ?5 (PSOv) or ?10 d (DO) of the VWP end (DO60 = 50 ± 3 DIM; DO88 = 78 ± 3 DIM; PSOv = 45 ± 3 DIM). Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Cows in the DO88 treatment had delayed time to pregnancy during lactation (DO60 vs. DO88 hazard ratio = 1.53, 95% confidence interval = 1.32 to 1.78; PSOv vs. DO88 hazard ratio = 1.37, 95% confidence interval = 1.19 to 1.61) and, within multiparous cows, the DO88 and PSOv treatments had greater risk of leaving the herd than cows in the DO60 treatment (DO88 vs. DO60 hazard ratio = 1.49, 95% confidence interval = 1.11 to 2.00; PSOv vs. DO60 hazard ratio = 1.39, 95% confidence interval = 1.03 to 1.85). Cows in the DO88 treatment had improved uterine health, greater BCS, and reduced incidence of anovulation than cows in DO60 and PSOv; however, overall pregnancy per AI 39 ± 3 d after AI was similar for the 3 treatment groups. In summary, reproductive management strategies that led to similar average DIM to the first service (~60 d) through a combination of AI at estrus with TAI (PSOv) or all TAI (DO60) resulted in reduced time to pregnancy after calving when compared with an all TAI program (DO88) with a VWP of 88 d. Within the multiparous cow group, those that received all TAI with a VWP duration of 60 d were less likely to leave the herd than cows in the other treatments.  相似文献   

5.
Two experiments in lactating dairy cows examined ovarian follicular responses to high, frequent doses of exogenous LH pulses at levels associated with follicular cysts. In Experiment 1, estrus was synchronized in 12 cyclic lactating cows >40 d postpartum. Emergence of the second follicular wave (d 0) was determined by ultrasonography. Starting on d 1, cows received LH (40 microg/h; n = 7) or saline (2 mL/h; n = 5) in hourly pulses for up to 5 (n = 5) or 7 (n = 7) d. On d 2, all cows received two injections of PGF2alpha, 12 h apart. In experiment 2, 14 lactating cows (7 to 12 d postpartum) received LH (40 microg/h; n = 7) or saline (1 mL/h; n = 7) in hourly pulses for 7 d, beginning 24 h after start of the first follicular wave. Daily samples were used to determine serum concentrations of progesterone (P4), estradiol-17beta (E2), LH, and FSH. Profiles of LH were determined from blood samples collected at 12-min intervals for 8 h on d 3. During infusion of LH, serum P4 and FSH were similar across treatments in both experiments. Serum E2 concentrations were similar in experiment 1, but serum E2 was greater on d 2, 3, and 5 in LH-treated cows in experiment 2. Infusion increased LH pulse frequency and amplitude in both experiments. Formation of cysts did not differ between LH- and saline-treated cows in either experiment (1 of 7 vs. 0 of 5 and 1 of 6 vs. 0 of 7, respectively). Cows that ovulated had similar intervals to ovulation in experiment 1 [6.0 +/- 0.1 d (LH) vs. 6.4 +/- 0.2 d (saline)], but in experiment 2, ovulation was 14 d earlier in LH-treated cows (5.6 +/- 1.8 d vs 19.9 +/- 1.5 d). In conclusion, high concentrations of LH are not solely responsible for formation of cysts in lactating dairy cows. Pulsatile infusion of LH stimulated follicular growth and steroidogenesis and decreased time to first ovulation in anestrous postpartum cows.  相似文献   

6.
Previous research indicates that high plasma urea nitrogen (PUN) concentrations are associated with decreased fertility in lactating dairy cows. The objective of this study was to monitor changes in the uterine environment during acute elevation of PUN. Lactating dairy cows (n = 8) were infused with saline or urea (0.01 g of urea/h per kg of body weight) through jugular vein catheters on d 7 after estrus. After 24 h, cows were switched to the opposite treatment for a second 24-h infusion period. Blood samples were collected every 2 h, and the pH within the lumen of the uterine horn ipsilateral to the corpus luteum was recorded every 6 h. At the end of each 24-h infusion period, 30 mL of sterile saline was flushed into the uterine lumen and immediately retrieved. Mean PUN concentration increased from 16.6 +/- 1.3 mg/dL during saline infusion to 22.6 +/- 1.3 mg/dL during urea infusion. Uterine pH decreased during urea infusion from 7.08 +/- 0.07 at 6 h to 6.88 +/- 0.08 at 18 h, but was unchanged during saline infusion (7.01 +/- 0.08 at 6 h to 7.06 +/- 0.07 at 18 h). Protein concentration, PGF(2alpha), and prostaglandin E(2) concentrations in uterine lavage samples were not different between treatments. The results of this study indicate that a short-term increase in PUN can exert direct effects on the uterine environment by decreasing uterine pH.  相似文献   

7.
The objective of this study was to evaluate serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows according to nutritional balance and glucose infusion. Ten nonlactating, ovariectomized Gir × Holstein cows were stratified by body weight (BW) and body condition score (BCS) on d −28 of the study, and randomly assigned to 1) negative nutrient balance (NB) or 2) positive nutrient balance (PB). From d −28 to d 0, cows were allocated according to nutritional treatment (5 cows/treatment) into 2 low-quality pastures with reduced forage availability. However, PB cows individually received, on average, 3 kg/cow per day (as-fed) of a concentrate during the study. All cows had an intravaginal progesterone releasing device inserted on d −14, which remained in cows until the end of the study. Cow BW and BCS were assessed again on d 0. On d 0, cows within nutritional treatment were randomly assigned to receive, in a crossover design containing 2 periods of 24 h each, 1) intravenous glucose infusion (GLU; 0.5 g of glucose/kg of BW, as a 5% glucose solution administered, on average, at 32 mL/min over a 3-h period), or 2) intravenous saline infusion (SAL; 0.9% solution infused on average at 32 mL/min over a 3-h period). Prior to the beginning of each period, all cows were fasted for 12 h. Blood samples were collected, relative to the beginning of the infusion, at −12 and −11.5 h (beginning of fasting), and at −0.5, 0, 0.5, 1, 2, 3, 4, 5, and 6 h. Following the last blood collection of period 1, cows received (PB) or not (NB) concentrate and were returned to their respective pastures. Changes in BCS and BW were greater in NB cows compared with PB cows (−0.60 and −0.25 ± 0.090 for BCS, respectively; −22.4 and 1.2 ± 6.58 kg for BW, respectively). Cows receiving GLUC had greater glucose concentrations from 0.5 to 3 h relative to infusion compared with SAL cows. Insulin concentrations were greater in PB cows assigned to GLUC compared with SAL cohorts at 0.5 and 3 h following infusion, whereas NB cows assigned to GLUC had greater insulin concentrations compared with SAL cohorts at 0.5, 1, 2, and 3 h. Progesterone concentrations were greater in PB cows assigned to GLUC at 2, 3, and 4 h following infusion compared with SAL cohorts. In conclusion, the effects of glucose infusion on serum concentrations of insulin and progesterone in nonlactating dairy cows were dependent on cow nutritional status.  相似文献   

8.
《Journal of dairy science》2023,106(7):5115-5126
This study aimed to determine the effect of 2 simple breeding strategies combining artificial insemination (AI) after detection of estrus (AIED) and timed AI (TAI) on first-service fertility in lactating Holstein cows. Weekly, lactating Holstein cows (n = l,049) between 40 and 46 d in milk (DIM) were randomly assigned to initiate 1 of 2 breeding strategies for first service: Presynch-14 and PG+G. Presynch-14 is a presynchronization strategy with 2 PGF treatments 14 d apart with the last PGF 14 d before the initiation of the Ovsynch protocol. Cows treated with PG+G receive a simpler presynchronization program that uses PGF and GnRH simultaneously 7 d before Ovsynch. In both treatments, cows detected in standing estrus by tail chalk at any time ≥55 DIM were inseminated, and treatment was discontinued (n = 525). Cows completing treatment received TAI from 78 to 84 DIM (n = 526). In a subgroup of cows that received TAI, blood was collected (n = 163) to assess circulating concentrations of progesterone, and ultrasonographic evaluations of ovaries were performed on the day of first GnRH of Ovsynch (n = 162) and PGF of Ovsynch (n = 122). The proportion of cows that received TAI was greater for PG+G compared with Presynch-14 (63.5 vs. 31.9%), which increased DIM at first service for cows treated with PG+G compared with Presynch-14 (75.5 ± 0.4 vs. 68.7 ± 0.4). For cows receiving TAI, the ovulatory response to first GnRH of Ovsynch (73.8 vs. 48.8%) and the proportion of cows with functional corpora lutea (92.6 vs. 73.1%) were greater for PG+G than Presynch-14. Cows treated with PG+G had greater overall pregnancy per AI (P/AI) 42 ± 7 d after AI (40.2 vs. 33.6%) and calving per AI (32.1 vs. 25.2%) than Presynch-14. For cows receiving AIED, treatment did not affect P/AI 42 ± 7 d after AI. However, for cows receiving TAI, PG+G increased P/AI compared with Presynch-14 (44.6 vs. 35.2%). Overall, cows receiving TAI had greater P/AI 42 ± 7 d after AI (42.5 vs. 31.5%) and calving per AI (34.1 vs. 23.7%) and decreased pregnancy loss (16.8 vs. 25.2%) than cows receiving AIED. In summary, PG+G increased the proportion of cows receiving TAI and the DIM at first service, P/AI, and calving per AI compared with Presynch-14 when both TAI programs were combined with AIED.  相似文献   

9.
《Journal of dairy science》2023,106(2):1429-1440
Postruminal intestinal barrier dysfunction caused by excessive hindgut fermentation may be a source of peripheral inflammation in dairy cattle. Therefore, the study objectives were to evaluate the effects of isolated hindgut acidosis on metabolism, inflammation, and production in lactating dairy cows. Five rumen-cannulated lactating Holstein cows (32.6 ± 7.2 kg/d of milk yield, 242 ± 108 d in milk; 642 ± 99 kg of body weight; 1.8 ± 1.0 parity) were enrolled in a study with 2 experimental periods (P). During P1 (4 d), cows were fed ad libitum a standard lactating cow diet (26% starch dry matter) and baseline data were collected. During P2 (7 d), all cows were fed the same diet ad libitum and abomasally infused with 4 kg/d of pure corn starch (1 kg of corn starch + 1.25 L of H2O/infusion at 0600, 1200, 1800, and 0000 h). Effects of time (hour relative to the first infusion or day) relative to P1 were evaluated using PROC MIXED in SAS (version 9.4; SAS Institute Inc.). Infusing starch markedly reduced fecal pH (5.84 vs. 6.76) and increased fecal starch (2.2 to 9.6% of dry matter) relative to baseline. During P2, milk yield, milk components, energy-corrected milk yield, and voluntary dry matter intake remained unchanged. At 14 h, plasma insulin and β-hydroxybutyrate increased (2.4-fold and 53%, respectively), whereas circulating glucose concentrations remained unaltered. Furthermore, blood urea nitrogen increased at 2 h (23%) before promptly decreasing below baseline at 14 h (13%). Nonesterified fatty acids tended to decrease from 2 to 26 h (40%). Circulating white blood cells and neutrophils increased on d 4 (36 and 73%, respectively) and somatic cell count increased on d 5 (4.8-fold). However, circulating serum amyloid A and lipopolysaccharide-binding protein concentrations were unaffected by starch infusions. Despite minor changes in postabsorptive energetics and leukocyte dynamics, abomasal starch infusions and the subsequent hindgut acidosis had little or no meaningful effects on biomarkers of immune activation or production variables.  相似文献   

10.
Our objective was to compare the effect of treatment with GnRH at the first treatment (G1) of the Breeding-Ovsynch portion of a Double-Ovsynch (DO) protocol with human chorionic gonadotropin (hCG) on pregnancies per artificial insemination (P/AI) in lactating dairy cows. In experiment 1, lactating dairy cows (n = 1,932) submitted to a DO protocol for first timed artificial insemination (TAI) on 2 commercial dairy farms were blocked by parity (primiparous vs. multiparous) and were randomly assigned to receive 100 µg of GnRH versus 2,500 IU of hCG at G1. Overall, P/AI 39 d after TAI for cows inseminated with sexed dairy semen was greater for cows treated with GnRH than for cows treated with hCG within each parity (primiparous: 42.6% vs. 38.2%; multiparous: 39.4% vs. 30.3%). Similarly, P/AI 39 d after TAI for multiparous cows inseminated with conventional beef semen tended to be greater for cows treated with GnRH than for cows treated with hCG (41.1% vs. 34.3%). In experiment 2, lactating Holstein cows (n = 43) were blocked by parity and were randomly assigned to the treatment protocols described for experiment 1. Ovaries were evaluated with transrectal ultrasonography immediately before treatment and 24, 28, 32, 36, and 40 h after treatment to assess time from treatment to ovulation, and blood samples were collected immediately before G1, at the first PGF treatment, 8 and 16 h later, at the second PGF treatment, 8 and 16 h later, at the second GnRH (G2) treatment, and at TAI to compare luteolysis based on serum progesterone (P4) concentrations. Although mean (± standard error of the mean) time from treatment to ovulation was approximately 2 h greater for cows treated with hCG than for cows treated with GnRH (33.7 ± 0.6 vs. 31.5 ± 0.6 h), P4 concentrations during luteolysis and the proportion of cows with complete luteolysis (P4 <0.4 ng/mL at G2) did not differ between treatments. We conclude that replacing 100 µg of GnRH with 2,500 IU of hCG at G1 of a DO protocol decreased fertility to TAI in lactating dairy cows but did not affect the rate or completeness of luteolysis despite the increased interval from treatment to ovulation.  相似文献   

11.
《Journal of dairy science》2023,106(1):624-640
The objectives of this study were to assess the effects of a single transdermal administration of flunixin meglumine (FM) in early postpartum Holstein Friesian dairy cows on serum concentrations of inflammatory and metabolic markers, uterine health, and indicators of pain. The hypothesis was that the anti-inflammatory, antipyretic, and analgetic effects of the pharmaceutic agent would reduce systemic inflammation, resulting in improved metabolic and inflammatory profile, diminished incidence of metritis, and reduced expression of pain. A total of 500 cows (153 primiparous, 347 multiparous) from 3 different commercial dairy farms in the northeast of Germany were included in a randomized controlled clinical trial. Farms were preselected based on high haptoglobin concentrations in their fresh lactating cows. Cows were excluded if they had experienced dystocia, stillbirth, or twin birth, or if they showed any signs of milk fever, retained fetal membranes, or fever (>40°C). The cows were treated once with either FM (3.33 mg/kg) or a placebo as control (CON) through transdermal administration between 24 to 36 h postpartum (d 2). General health examinations were performed (daily from d 2–8 and additionally on d 15 postpartum), vaginal discharge was assessed using the Metricheck device (d 8 and 15 postpartum) and serum samples were analyzed for inflammatory and metabolic markers (d 2, 4, and 6 postpartum). Effects of treatment, parity, sampling day, and their interactions were evaluated using mixed effects models. Primiparous cows treated with FM showed lower serum haptoglobin concentrations (0.90 ± 0.08 vs. 1.17 ± 0.07 g/L; ± standard error of the mean) and higher serum albumin concentrations (35.5 ± 0.31 vs. 34.8 ± 0.31 g/L) on d 6 postpartum. They also had a lower risk for purulent vaginal discharge with or without a fever compared with CON cows on d 15 postpartum (odds ratio for CON vs. FM: 1.63, 95% CI: 1.26–2.00), and body temperature was lower throughout the first 15 d in milk (39.1 ± 0.11 vs. 39.2 ± 0.11°C). Multiparous cows treated with FM had lower serum β-hydroxybutyrate concentrations on d 4 postpartum (0.71 ± 0.05 vs. 0.78 ± 0.05 mmol/L) and d 6 postpartum (0.74 ± 0.05 vs. 0.80 ± 0.05 mmol/L). Regardless of parity, FM-treated cows were significantly less likely to abduct their tail from their body (14.3 vs. 23.6%) and show an arched back (27.9 vs. 39.7%) on the day after treatment compared with CON cows. It can be concluded that FM treatment slightly reduced inflammation and diminished the risk for metritis in primiparous cows, improved metabolic profile in multiparous cows, and reduced expressions of pain in all cows.  相似文献   

12.
The aim of this study was to examine the effect of a single administration of human chorionic gonadotrophin (hCG) during the establishment of the corpus luteum (CL) on progesterone (P4) concentration and pregnancy per artificial insemination (P/AI) in lactating dairy cows. Postpartum spring-calving lactating dairy cows (n = 800; mean ± SD days in milk and parity were 78.5 ± 16.7 and 2.3 ± 0.8, respectively) on 3 farms were enrolled on the study. All cows underwent the same fixed-time AI (FTAI) protocol involving a 7-d progesterone-releasing intravaginal device with gonadotrophin-releasing hormone (GnRH) administration at device insertion, prostaglandin at device removal followed by GnRH 56 h later, and AI 16 h after the second GnRH injection. Cows were blocked on days postpartum, body condition score, and parity and randomly assigned to receive either 3,000 IU of hCG 2 d after FTAI or no further treatment (control). Blood samples were collected on d 7 and 14 postestrus by coccygeal venipuncture on a subset of 204 cows to measure serum P4 concentration, and pregnancy was diagnosed by ultrasonography approximately 30 and 70 d after FTAI. Administration of hCG caused an increase in circulating P4 concentrations compared with the control treatment on d 7 (+22.2%) and d 14 (+25.7%). The P/AI at 30 d after FTAI was affected by treatment, farm, body condition score, and calving to service interval. Overall, administration of hCG decreased P/AI (46.3% vs. 55.1% for the control). Among cows that did not become pregnant following AI, a greater proportion of control cows exhibited a short repeat interval (≤17 d) compared with cows treated with hCG (8.6% vs. 2.8%, respectively). In addition, the percentages of cows pregnant at d 21 (59.6% vs. 52.0%) and d 42 (78.3% vs. 71.9%) were greater in control than in hCG-treated cows. The overall incidence of embryo loss was 10.7% and was not affected by treatment. There was a tendency for an interaction between treatment and CL status at synchronization protocol initiation for both P4 concentration and P/AI. In conclusion, administration of hCG 2 d after FTAI increased circulating P4 concentrations. Unexpectedly, cows treated with hCG had lower fertility; however, this negative effect on fertility was manifested primarily in cows lacking a CL at the onset of the synchronization protocol.  相似文献   

13.
14.
Okara meal is a byproduct from the production of soymilk and tofu and can potentially replace soybean meal (SBM) in dairy diets due to its high crude protein (CP) concentration and residual fat. The objective of this study was to investigate the effects of replacing SBM with okara meal on feed intake, yields of milk and milk components, milk fatty acid (FA) profile, nutrient utilization, and plasma AA concentration in lactating dairy cows. Twelve multiparous (65 ± 33 d in milk) and 8 primiparous (100 ± 35 d in milk) organically certified Jersey cows were paired by parity or days in milk, and within pair, randomly assigned to treatments in a crossover design with 21-d periods (14 d for diet adaptation and 7 d for data and sample collection). Diets were fed as total mixed ration formulated to be isonitrogenous and isofibrous and contained (dry matter basis) 50% mixed, mostly grass baleage, 2% sugarcane liquid molasses, 2% minerals-vitamins premix, and either (1) 8.1% SBM, 10% soyhulls, and 27.9% ground corn (CTRL); or (2) 15% okara meal, 8% soyhulls, and 23% ground corn (OKR). Dietary CP, ash-free neutral detergent fiber, and total FA averaged 15.4, 35.3, and 3.08% for CTRL and 15.9%, 36.3%, and 3.74% for OKR, respectively. Substitution of SBM with okara meal did not alter dry matter intake but increased intakes of CP and ash-free neutral detergent fiber. Additionally, no significant differences between treatments were observed for yields of milk and milk components, and concentrations of milk fat, lactose, and total solids. However, milk true protein concentration was lower in cows fed OKR (3.76%) versus CTRL (3.81%). Both milk urea N (8.51 vs. 9.47 mg/dL) and plasma urea N (16.9 vs. 17.8 mg/dL) concentrations decreased with OKR relative to the CTRL diet, respectively. Compared with CTRL, feeding OKR lowered the milk proportions of total odd-chain FA, de novo FA, and mixed FA and increased those of preformed FA, total n-6 FA, and total n-3 FA. The milk proportions of trans-10 18:1, trans-11 18:1, and cis-9,trans-11 18:2 were greater with feeding OKR versus the CTRL diet. The apparent total-tract digestibility of nutrients, urinary excretion of total purine derivatives (uric acid plus allantoin), and total N were not affected by treatments. Except for plasma Leu, which was lower in OKR compared with the CTRL diet, no other significant changes in the plasma concentrations of AA were observed. The plasma concentration of carnosine was lowest in cows receiving the OKR diet. Overall, our results revealed that okara meal can completely replace SBM without negatively affecting production and nutrient digestibility in early- to mid-lactation Jersey cows. Further research is needed to assess the economic feasibility of including okara meal in dairy diets, as well as the amount of okara meal that maximizes yields of milk and milk components in dairy cows in different stages of lactation.  相似文献   

15.
Most Canadian dairy herds operate in tiestall housing (61%), where average estrus detection rates may be lower than 54%. The objective of this study was to evaluate infrared thermography and behavioral biometrics as indicators of estrus in dairy cows. Eighteen cyclic multiparous cows (Synch) were subjected to an estrus synchronization protocol, and 18 pregnant cows (control) received a sham protocol on the same schedule and frequency as the cyclic cow treatment. A decline in plasma concentrations of progesterone and the appearance of a dominant follicle using transrectal ultrasonography were used as indirect indicators of estrus, and the disappearance of a dominant follicle was used to confirm ovulation. All cows were monitored via visual cameras to determine the frequency of treading, drinking, neighbor interaction, tail movement, lying, and shifting behaviors. Infrared thermograms were recorded at the eye, muzzle, cheek, neck, front right foot, front left foot, rump, flank, vulva area, tail head, and withers. To evaluate the accuracy of behavioral and thermal parameters, a predefined minimum acceptable value (i.e., threshold) for estrus alerts (>0.30 Youden J index and >0.60 area under the curve) was used. Ovulation was confirmed in 14 (77.7%) out of 18 Synch cows. Eye, cheek, neck, rump, flank, vulva area, and wither thermograms exhibited higher temperatures at 48 h [cycle threshold (Δt) = +0.30 to 1.20°C] and 24 h before ovulation compared with 4 d prior to ovulation (Δt = 0.06 to 0.11°C) and during ovulation day (Δt = 0.03 to 0.32°C) in the Synch group. In addition, control cows exhibited greater treading activity per day compared with Synch cows (20.84 ± 0.39 vs. 16.35 events/5 min ± 0.34), and tail movement frequency was greater in Synch cows compared with control cows (14.84 ± 2.7 vs. 10.11 ± 4.7 events/5 min). However, within Synch cows, tail movement was the only behavior that significantly increased in frequency 2 d before ovulation (11.81 ± 1.71 events/5 min) followed by a decrease in frequency 1 d before ovulation (4.67 ± 1.05 events/5 min) compared with ovulation day (0 d; 6.10 ± 1.25 events/5 min) and during luteolysis (3 d before ovulation; 6.01 ± 1.25 events/5 min). Upon evaluation of all variables (thermograms and behavior frequencies) as estrus indicators at 48 and 24 h before ovulation, treading and tail movements before milking and 9 thermal locations satisfied the predefined minimum acceptable value for estrus alerts. This study demonstrates that fluctuations in radiated temperature measured at specific anatomical locations and the frequency of tail movements and treading behaviors can be used as a noninvasive estrus alerts in multiparous cows housed in a tiestall system.  相似文献   

16.
Gluconic acid is a carboxylic acid naturally occurring in plants and honey. In nonruminant animals, gluconic acid has been shown to increase gastrointestinal butyrate concentrations and improve growth performance, but a ruminant application remains undescribed. This experiment examined the effects of postruminal calcium gluconate (CaG) on milk production, fecal volatile fatty acid concentrations, and plasma metabolite concentrations in lactating dairy cows. Six rumen cannulated multiparous Holstein cows (60 ± 6 d in milk) were randomly assigned to 6 treatment sequences within a 6 × 6 Latin square design in which each experimental period consisted of 5 d of continuous postruminal infusion followed by a 2 d wash-out period. Test treatments included a negative control (CON; 0.90% NaCl wt/vol), positive control (Na-butyrate, 135 g/d), and 4 doses of CaG (44, 93, 140, and 187 g/d). Cows received a total mixed ration (31% corn silage, 28% alfalfa silage, 5% hay, 36% concentrate) with dry matter intake fixed (25.3 ± 1.7 kg/d) throughout the experiment. On d 5 of each infusion period, samples of milk, feces, and blood were collected from each animal. Calcium gluconate treatments increased milk fat concentration, and a tendency was observed for increased milk fat yield and energy-corrected milk yield above levels achieved by CON, with maximal treatment responses of 4.43% (CON 3.81%), 2.089 kg/d (CON 1.760 kg/d), and 51.8 kg/d (CON 47.1 kg/d), respectively. Concentrations of iso-butyric acid in feces were greater in cows infused with CaG (13.3 µmol/g) treatments compared with CON (9.7 µmol/g). Arterial concentrations of glucose and nonesterified fatty acids were lower (glucose: CaG 2.98 mmol/L, CON 3.29 mmol/L and nonesterified fatty acids: CaG 0.130 mmol/L vs. 0.148 mmol/L) and β-hydroxybutyrate higher (CaG 1.703 vs. CON 0.812) in cows infused with CaG than CON. Together, these results suggest that postruminal infusion of CaG may alter metabolic mechanisms to support a milk fat production response.  相似文献   

17.
《Journal of dairy science》2023,106(6):4198-4213
Objectives of this experiment were to study the effect of infusing utero-pathogenic bacteria to induce endometrial inflammation on productive performance in early lactation and subsequent reproduction. Although endometritis is associated with perturbed reproduction, numerous factors may contribute to the observed association. It was hypothesized that induced endometrial inflammation, resulting in localized and systemic inflammatory responses, compromises production and reproduction. Holstein cows without clinical disease and with less than 18% polymorphonuclear leukocytes (PMN) in endometrial cytology on d 31 ± 3 postpartum had their estrous cycle synchronized. Cows were blocked by parity and genomic breeding value for cow conception rate and, within block, assigned randomly to remain as untreated controls (CON; n = 37) or to receive an intrauterine infusion of 5.19 × 108 cfu Escherichia coli and 4.34 × 108 cfu Trueperella pyogenes during the luteal phase to induce endometrial inflammation (INF; n = 48). Endometrial cytology was taken on d 2 and 7 after treatment to evaluate the proportion of PMN. Rectal temperature, dry matter intake, and yields of milk and components were measured in the first 7 d after treatment. Blood serum was analyzed for concentration of haptoglobin. Leukocytes were isolated from blood on d 2 and 7 after treatment and on d 19 after artificial insemination (AI) and mRNA was quantified for a select group of genes. Cows received AI and reproduction was followed for 300 d postpartum. Bacterial infusion induced endometrial inflammation with increased proportions of PMN in the endometrial cytology on d 2 (4.4 ± 0.7 vs. 26.3 ± 2.8%) and 7 (10.9 ± 1.7 vs. 17.4 ± 2.1%) after treatment, resulting in increased mean prevalence of subclinical endometritis (>10% PMN; 23.3 ± 6.3 vs. 80.9 ± 5.1%). Rectal temperature did not differ between CON and INF, but the concentration of haptoglobin in serum tended to increase in INF compared with CON (113 ± 14 vs. 150 ± 16 µg/mL). Induced endometrial inflammation reduced yields of milk (44.9 ± 0.8 vs. 41.6 ± 0.8 kg/d), protein (1.19 ± 0.03 vs. 1.12 ± 0.03 kg/d), and lactose (2.17 ± 0.04 vs. 2.03 ± 0.04 kg/d) and tended to reduce dry matter intake (20.7 ± 0.5 vs. 19.4 ± 0.6 kg/d) in the first 7 d after treatment. Indeed, the reduction in milk yield lasted 4 wk. However, treatment did not affect yields of energy-corrected milk or fat because treatment with INF increased the concentration of fat in milk (3.54 ± 0.10 vs. 3.84 ± 0.10%). Induced endometrial inflammation reduced pregnancy per AI at all inseminations (33.4 ± 5.1 vs. 21.6 ± 3.7%) and the hazard of pregnancy (0.61; 95% CI = 0.36–1.04), which extended the median days open by 24 d. Blood leukocytes from INF cows had increased mRNA expression of the pro-inflammatory gene IL1B on d 2 and 7 after treatment, but reduced expression of the IFN-stimulated genes ISG15 and MX2 on d 19 after AI. Induced endometrial inflammation depressed production and caused long-term negative effects on reproduction in lactating dairy cows.  相似文献   

18.
This experiment evaluated the reproductive performance, herd exit dynamics, and lactation performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. Secondary objectives were evaluating VWP effect on cyclicity status, uterine health, systemic inflammation, and body condition score (BCS) before first service. Lactating Holstein cows from 3 commercial farms in New York State cows were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to VWP of 60 (VWP60; n = 1,352) or 88 (VWP88; n = 1,359) days in milk (DIM). All cows received the Double-Ovsynch protocol (GnRH-7 d-PGF-3 d-GnRH-7 d-GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-timed artificial insemination; TAI) for synchronization of ovulation and TAI. For second and greater artificial insemination (AI), cows received AI after detection of estrus or the Ovsynch protocol (GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-TAI) initiated 32 ± 3 d after AI for cows not re-inseminated at detected estrus. Cyclicity status (progesterone concentration), uterine health (vaginal discharge and uterine cytology), BCS, and systemic inflammation (haptoglobin concentration) were evaluated at baseline (33 ± 3 DIM for both treatments), beginning of the Double-Ovsynch protocol, and 10 d before TAI. Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Extending duration of VWP from 60 to 88 DIM increased pregnancies per AI (P/AI) to first service (VWP60 = 41%; VWP88 = 47%). Nonetheless, the greatest benefit of extending VWP on first-service P/AI was for primiparous cows (VWP60 = 46%; VWP88 = 55%), as P/AI did not differ within the multiparous cow group (VWP60 = 36%; VWP88 = 40%). Physiological status more conducive to pregnancy—characterized by improved uterine health, greater BCS, reduced systemic inflammation, and to a lesser extent more time to resume ovarian cyclicity—explained the increment in P/AI to first service. Our data also indicated that despite having greater P/AI to first service, cows with the longer VWP had delayed time to pregnancy during lactation (hazard ratio = 0.72; 95% confidence interval 0.69–0.98) and greater risk of leaving the herd, particularly for multiparous cows (hazard ratio = 1.34; 95% confidence interval 1.23–1.47). This shift in pregnancy timing led to an overall extension of the lactation length (+13 d), which resulted in greater total milk yield per lactation (+491 kg) but not greater milk yield per day of lactation. In conclusion, data from this experiment highlight the importance of considering the complex interactions between reproductive performance, herd exit dynamics, and lactation performance as well as the effects of parity at the time of defining the duration of the VWP for lactating dairy cows.  相似文献   

19.
Kelp meal (KM) is a supplement made from the brown seaweed Ascophyllum nodosum, known to bioaccumulate iodine (I) and to be the richest source of phlorotannins, which can inhibit ruminal proteolysis and microbial growth. The objective of this study was to investigate the effects of KM on production, milk I, concentrations of blood metabolites, apparent total-tract digestibility of nutrients, and CH4 emissions in grazing dairy cows. Eight multiparous Jersey cows averaging (mean ± SD) 175 ± 60 d in milk and 12 primiparous Jersey cows averaging 142 ± 47 d in milk at the beginning of the study were assigned to either 0 g/d of KM (control diet, CTRL) or 113 g/d of KM (brown seaweed diet, BSW) in a randomized complete block design. Diets were formulated to yield a 70:30 forage-to-concentrate ratio and consisted of (dry matter basis): 48% cool-season perennial herbage and 52% partial TMR (pTMR). Each experimental period (n = 3) lasted 28 d, with data and sample collection taking place during the last 7 d of each period. Cows had approximately 16.5 h of access to pasture daily. Herbage dry matter intake increased, and total dry matter intake tended to increase in cows fed BSW versus the CTRL diet. Milk yield and concentrations and yields of milk components were not affected by diets. Similarly, blood concentrations of cortisol, glucose, fatty acids, and thyroxine did not change with feeding CTRL or BSW. However, a diet × period interaction was observed for milk I concentration; cows offered the BSW diet had greater milk I concentration during periods 1, 2, and 3, but the largest difference between BSW and CTRL was observed in period 2 (579 vs. 111 µg/L, respectively). Except for period 2, the concentration of milk I in cows fed KM did not exceed the 500 µg/L threshold recommended for human consumption. Diet × period interactions were also found for serum triiodothyronine concentration, total-tract digestibilities of crude protein and acid detergent fiber, CH4 production, and urinary excretion of purine derivatives. Overall, the lack of KM effects on milk yield and concentrations and yields of milk components indicate that dairy producers should consider costs before making KM supplementation decisions during the grazing season. Future research is needed to evaluate the concentration of I in retail organic milk because of the high prevalence of KM supplementation in northeastern and midwestern US organic dairies and possibly in other regions of the country.  相似文献   

20.
《Journal of dairy science》2023,106(7):4650-4665
The objective of this study was to evaluate the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP) on milk production efficiency of Holstein cows naturally exposed to high temperature and humidity conditions. The study was conducted in 2 commercial farms in Mexico from July to October 2020 and included 1 wk covariate period, 3 wk adaptation, and 12 wk data collection. Cows [n = 1,843; ≥21 d in milk (DIM) and <100 d carried calf] were enrolled and assigned to the study pens (n = 10) balanced for parity, milk yield, and DIM. Pens were fed a total mixed ration diet either without (CTRL) or with SCFP (19 g/d, NutriTek, Diamond V). Milk yield, energy-corrected milk (ECM), milk components, linear somatic cell score, dry matter intake (DMI), feed efficiency (FE; Milk/DMI and ECM/DMI), body condition score, and the incidence of clinical mastitis, pneumonia, and culling were monitored. Statistical analyses included mixed linear and logistic models accounting for repeated measures (when applicable; multiple measurements per cow within treated pens) with pen as the experimental unit and treatment, time (week of study), parity (1 vs. 2+), and their interactions as fixed and pen nested within farm and treatment as random effect. Parity 2+ cows within pens fed SCFP produced more milk than cows within CTRL pens (42.1 vs. 41.2 kg/d); there were no production differences between groups of primiparous groups. Cows within SCFP pens had lower DMI (25.2 vs. 26.0 kg/d) and greater FE (1.59 vs. 1.53) and ECM FE (1.73 vs. 1.68) than cows within CTRL pens. Milk components, linear somatic cell score, health events, and culling were not different between groups. At the end of the study (245 ± 54 DIM), SCFP cows had greater body condition score than CTRL (3.33 vs. 3.23 in the first parity; 3.11 vs. 3.04 in 2+ parity cows). Feeding Saccharomyces cerevisiae fermentation products to lactating cows exposed to high temperature and humidity conditions improved FE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号