首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Soil reinforcement through the inclusion of oriented or randomly distributed discrete elements such as fibres has recently attracted increasing attention in geotechnical engineering. Therefore, the purpose of this paper is to investigate the influence of certain parameters (the strength properties of the fibre, the relative size of the fibres and grains, and the rate of shear) on the shear strength of polypropylene fibre reinforced cohesive soils. A series of consolidated drained or undrained direct shear tests were conducted on unreinforced and reinforced sandy silt and silty clay specimens. Two types of polypropylene fibres with different mechanical indices were used. The fibre content was varied between 0.3% and 1.1% by weight of dry soil. The test results revealed that the inclusion of fibres in soil significantly increases the shear strength. The attainment of the high shear strength is attributed to the micromechanisms involved in the fibre/soil interactions as studied through scanning electron micrographs. The results also showed that the reinforcement effect was more pronounced under undrained shearing conditions. An important outcome from the current work is that, from the data obtained, the strength of the reinforced soil composites is not practically affected by the fibre mechanical indices.  相似文献   

2.
In current geoenvironmental practice, design engineers usually require that soil liners in waste landfills be compacted within a specified range of water content and dry unit weight. This specification is based primarily on the need to achieve a minimum dry unit weight for factors controlling the performance of compacted soil liners most especially the hydraulic conductivity, k. In this study, lateritic soil treated with up to 10% bentonite, prepared at various compaction states (dry of optimum, optimum and wet of optimum moisture content) was compacted with four compactive efforts (i.e., the reduced British Standard Light, British Standard Light, West African Standard, and British Standard Heavy) to simulate the range of compaction energies expected in the field. Prepared soil mixtures were permeated with water and specimens that yielded the permissible limit of k????1?×?10?9?m/s were enclosed in an envelope (known as the acceptable zone) on the water content?Cdry unit weight curve. It was observed that compaction conditions resulting in moisture content slightly wet of optimum led to the lowest values of k and that the shapes and boundaries of the acceptable zones gradually increased in extent, shifting to wet side of optimum moisture content as the bentonite content increased to 10%. This approach provides good control over the quality of compacted soils and has great potential for field application.  相似文献   

3.
Clay deposits in Oltu-Narman basins (Erzurum, northern Turkey) have been studied to determine their engineering properties and to evaluate their uses for geotechnical applications. These deposits are concentrated in two different stratigraphic horizons namely the Late Oligocene and the Early Miocene sequences. Clay-rich fine-grained sedimentary units are deposited in shallow marine and lagoonar mixed environments. Their clay minerals originated by the alteration of Eocene calc-alkaline island-arc volcanics, preferably from pyroclastics (trachite and andesite flow), which form the basement for the Oltu depression. Smectite group clay minerals are found abundant in clay deposits. The experimental results show that the clay soils have high plasticity behaviors and low hydraulic conductivity properties. The optimum water content, the free swell, and the swelling pressure of clay samples decreased and the maximum dry unit weight of clay samples increased under high temperature. Consequently, it is concluded that the expanding of clay soils is an important soil problem that cannot be avoided in the significant parts of Oltu city and its villages. However, the soils of clay-rich layers in the outcrops-section of clay deposits can be successfully used to build compacted clay liners for landfill systems and to construct vertical and horizontal barriers for protection of ground water and for preventing soil pollution in geotechnical applications.  相似文献   

4.
Soil materials used to construct the impervious core of the Camligöze dam consist of clay minerals, quartz, feldspar, and calcite. Smectite and chlorite + kaolinite appear to be the dominant clay minerals. Illite-smectite and illite also are present. The soils are predominantly of the CL (inorganic clays, silty clays, sandy clays of low plasticity) type, and to a lesser extent of the MH (inorganic silts of high plasticity) type and gravelly, sandy, and silty clay. The study-area soils are not active, provide low to medium swelling potential, and are impervious when compacted. According to the undrained shear strength when compacted, materials can be regarded as “soft.” Evaluation based on specific gravity, maximum dry unit weight, optimum water content, liquid limit, and the plasticity index results in an assessment rating of the relative desirability of the tested soils for core as 3 (very high level of desirability). For a small quantity (20%) of the soils that are of the MH type, the desirability is 9 (very low level of desirability). The materials are generally usable as impervious material for the clay core.  相似文献   

5.
At present, nearly 100 million tonnes of fly ash is being generated annually in India posing serious health and environmental problems. To control these problems, the most commonly used method is addition of fly ash as a stabilizing agent usually used in combination with soils. In the present study, high-calcium (ASTM Class C—Neyveli fly) and low-calcium (ASTM Class F—Badarpur fly ash) fly ashes in different proportions by weight (10, 20, 40, 60 and 80 %) were added to a highly expansive soil [known as black cotton (BC) soil] from India. Laboratory tests involved determination of physical properties, compaction characteristics and swell potential. The test results show that the consistency limits, compaction characteristics and swelling potential of expansive soil–fly ash mixtures are significantly modified and improved. It is seen that 40 % fly ash content is the optimum quantity to improve the plasticity characteristics of BC soil. The fly ashes exhibit low dry unit weight compared to BC soil. With the addition of fly ash to BC soil the maximum dry unit weight (γdmax) of the soil–fly ash mixtures decreases with increase in optimum moisture content (OMC), which can be mainly attributed to the improvement in gradation of the fly ash. It is also observed that 10 % of Neyveli fly ash is the optimum amount required to minimize the swell potential compared to 40 % of Badarpur fly ash. Therefore, the main objective of the study was to study the effect of fly ashes on the physical, compaction, and swelling potential of BC soils, and bulk utilization of industrial waste by-product without adversely affecting the environment.  相似文献   

6.
查甫生  刘松玉  杜延军 《岩土力学》2006,27(Z1):549-554
研究掺粉煤灰对合肥膨胀土的物理性质指标以及胀缩性指标等的影响,探讨利用粉煤灰改良膨胀土的措施与效果。试验研究结果表明,在膨胀土中掺入适量的粉煤灰可有效降低膨胀土的塑性指数、降低膨胀势、减小线缩率与降低活性。在膨胀土中掺入粉煤灰还可改变膨胀土的击实特性,一定击实功作用下,随着掺灰率的增加,土体的最优含水率与最大干密度均减小,膨胀土中掺入粉煤灰后,膨胀土可在较小的含水率下通过击实或压实达到稳定。掺灰膨胀土的膨胀量与膨胀力随养护龄期的增长而减小;没有经过养护的掺灰土,其无侧限抗压强度随掺灰率的变化几乎没有变化,经过7 d养护后,土的无侧限抗压强度有所增长,并且存在一个峰值点,合肥膨胀土的无侧限抗压强度所对应的最佳掺粉煤灰率约为15 %~20 %。  相似文献   

7.
广西红粘土击实样强度特性与胀缩性能   总被引:15,自引:0,他引:15  
通过对广西贵港红粘土重型击实样的室内试验研究,探讨了其力学特性、胀缩性能、孔径分布特征与含水量之间的关系。结果表明:干密度指标总体上能反映红粘土击实样的强度规律,但非饱和击实样强度峰值对应的含水量因基质吸力作用而偏小,饱和后土体由于吸水膨胀与基质吸力的消失,使得强度峰值对应含水量较饱和前明显增大,红粘土在最优含水量下压实,虽可获得很高的压实度,但饱和后的强度并非最大;红粘土击实样的胀缩性能主要由含水量决定,同时,受到干密度的影响;孔隙主要以孔径在0.01~0.05μm范围内的小孔隙为主,为进一步掌握红粘土的工程力学特性提供了帮助。  相似文献   

8.
To prevent the leakage of pollutant liquids into groundwater and sublayers, the compacted fine-grained soils are commonly utilized as mineral liners or a sealing system constructed under municipal solid waste and other containment hazardous materials. This study presents the correlation equations of the compaction parameters required for construction of a mineral liner system. The determination of the characteristic compaction parameters, maximum dry unit weight (γ dmax) and optimum water content (w opt) requires considerable time and great effort. In this study, empirical models are described and examined to find which of the index properties correlate well with the compaction characteristics for estimating γ dmax and w opt of fine-grained soils at the standard compactive effort. The compaction data are correlated with different combinations of gravel content (G), sand content (S), fine-grained content (FC = clay + silt), plasticity index (I p), liquid limit (w L) and plastic limit (w P) by performing multilinear regression (MLR) analyses. The obtained correlations with statistical parameters are presented and compared with the previous studies. It is found that the maximum dry unit weight and optimum water content have a considerably good correlation with plastic limit in comparison with liquid limit and plasticity index.  相似文献   

9.
Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils   总被引:1,自引:1,他引:0  
This paper aims to present the usability of an adaptive neuro fuzzy inference system (ANFIS) for the prediction swelling potential of the compacted soils that are important materials for geotechnical purposes such as engineered barriers for municipal solid waste, earth dams, embankment and roads. In this study the swelling potential that is also one of significant parameters for compacted soils was modeled by ANFIS. For the training and testing of ANFIS model, data sets were collected from the tests performed on compacted soils for different geotechnical application in Nigde. Four parameters such as coarse-grained fraction ratio (CG), fine-grained fraction ratio (FG), plasticity index (PI) and maximum dry density (MDD) were presented to ANFIS model as inputs. The results obtained from the ANFIS models were validated with the data sets which are not used for the training stage. The analyses revealed that the predictions from ANFIS model are in sufficient agreement with test results.  相似文献   

10.
Compacted clay soils are used as barriers in geoenvironmental engineering applications and are likely to be exposed to salinization and desalinization cycles during life of the facility. Changes in pore fluid composition from salinization and desalinization cycles induce osmotic suction gradients between soil–water and reservoir (example, landfill/brine pond) solution. Dissipation of osmotic suction gradients may induce osmotic swelling and consolidation strains. This paper examines the osmotic swelling and consolidation behaviour of compacted clays exposed to salinization and desalinization cycles at consolidation pressure of 200 kPa in oedometer assemblies. During salinization cycle, sodium ions of reservoir fluid replaced the divalent exchangeable cations. The osmotic swelling strain developed during first desalinization cycle was 29-fold higher than matric suction induced swelling strain of the compacted specimen. Further, the diffusion controlled osmotic swelling strain was 100-fold slower than matric suction-driven swelling process. After establishment of ion-exchange equilibrium, saturated saline specimens develop reversible osmotic swelling strains on exposure to desalinization cycles. Likewise the saturated desalinated specimen develops reversible osmotic consolidation strains on exposure to cycles of salinization. Variations in compaction dry density has a bearing on the osmotic swelling and consolidation strains, while, compaction water content had no bearing on the osmotic volumetric strains.  相似文献   

11.
通过对具有不同初始含水率和干密度的两种压实黏质砂土的脱湿曲线进行测试、分析和对比,并结合核磁共振技术,探讨了干密度、初始含水率和土样组分对压实黏质砂土脱湿过程的影响规律。利用核磁共振测得了试样在各级吸力下的T2时间(横向弛豫时间)分布曲线,定性地探讨了不同吸力下试样中的水分分布特征,揭示了干密度、初始含水率和土样组分对试样脱湿过程的微观机制影响。试验结果表明:干密度仅在低基质吸力条件下对试样脱湿过程产生重要影响,而在高吸力条件下初始含水率和试样组分起主导作用;核磁共振结果证实在压实黏质砂土中,小孔隙结构主要由初始含水率和试样组分控制,而大孔隙的结构主要取决于干密度;试样组分对压实土的内部结构和孔隙大小分布的影响比初始含水率大。  相似文献   

12.
Based on hypotheses derived directly from experimental observations of the triaxial behaviour, a constitutive model for fibre reinforced sands is built in this paper. Both the sand matrix and the fibres obey their own constitutive law, whereas their contributions are superimposed using a volumetric homogenization procedure. The Severn‐Trent sand model, which combines well‐known concepts such as critical state theory, Mohr‐Coulomb like strength criterion, bounding surface plasticity and kinematic hardening, is adopted for the sand matrix. Although the fibres are treated as discrete forces with defined orientation, an equivalent continuum stress for the fibre phase is derived to allow the superposition of effects of sand and fibres. The fibres are considered as purely tensile elements following a linear elastic constitutive rule. The strain in the fibres is expressed as a fraction of the strain in the reinforced sample so that imperfect bonding is assumed at the sand‐fibre interface. Only those fibres oriented within the tensile strain domain of the sample can mobilize tensile stress—the orientation of fibres is one of the key ingredients to capture the anisotropic behaviour of fibre reinforced soil that is observed for triaxial compression and extension loading. A further mechanism of partition of the volume of voids between the fibres and the sand matrix is introduced and shown to be fundamental for the simulation of the volumetric behaviour of fibre‐reinforced soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The Influence of Placement Conditions on the Swelling of Variable Clays   总被引:1,自引:1,他引:0  
The swelling of clay when it is subjected to moisture increase is a complicated process found to be influenced by several factors. The clay??s level of response is highly dependent on its mineralogical composition and structure. Practicing geotechnical engineers use the placement state and general index properties to forecast the swelling behavior of the soils. The purpose of this study was to investigate the influence of placement conditions on various clays and to demonstrate that the swelling of a particular clay type should not be predicted using information and trends obtained for other clays with different origins. Clay from Saudi Arabia was used to investigate the influence of initial moisture content and initial dry density on swelling. The prediction models created by other researchers were compared to the measured values in this study. The swelling behavior of both initially dry and wet prepared bentonite was examined, and the rate at which swelling developed in the bentonite clay was studied. The role of clay content in the volume change of sand?Cbentonite mixtures was also investigated. It was concluded that the prediction of clay-swelling parameters should not be based on the properties of other clays with different origins and mineralogical compositions. The trends published in the literature should be taken as a general guide only, and the influence of moisture content and dry density on swelling should be verified for individual sites. Because clay content significantly influences the overall volume change, it should be carefully assessed in each case.  相似文献   

14.
Soil suction is the most relevant soil parameter for characterization of the swell behavior. An attempt was made to predict swell pressures from soil suction measurements. In this study, Na-bentonite was mixed with kaolinite in the ratios of 5, 10, 15, 20 and 25% of dry kaolinite weight to obtain soils in a wide range of plasticity indices (i.e. 30, 50, 68, 84 and 97%). Suction measurements using thermocouple psychrometer technique were made on statically compacted specimens. The dependence of soil suction on water content, dry density and bentonite content was examined. Soil suction was correlated to the soil properties, namely, water content, plasticity index, dry density, cation exchange capacity and specific surface area using multiple regression analyses. The correlations revealed a simple regression equation for a quick prediction of soil suctions from easily determined soil properties. In order to investigate soil suction versus swell pressure behavior, the results of standard constant volume swell tests (ASTM, 1990) performed on statically compacted samples of these clay mixtures were used. A linear relationship was established between the logarithm soil suction and the swell pressure. It was also found that an experimental relationship which would directly relate the initial soil suction to the swell pressure can be established.  相似文献   

15.
The thermal property is one of the key properties for the design of the high-level radioactive waste (HLW) repository. In this study, the thermal properties transient automatic tester (HPP-F) is uesd to study the thermal conductivity of multiphase composite buffer/backfill material including the type B-Z and B-Z-P (Here B、Z、P represents bentonite、zeolite and pyrite respectively,the same as in the following.) in different dry density and moisture conditions. The results show that for the same moisture content (dry density), thermal conductivity of specimens increases as the dry density (moisture content) increases. As a result, the type B-Z-P which is highly compacted of 1.8 g/cm3 in dry density and 17.65% in moisture content performs well, it meets the requirements of the IAEA and is easy to be compacted ,so it can be recommend as a alternative material of high level radioactive waste disposal repository buffer/backfilling materials.  相似文献   

16.
This study evaluates the applicability of residually derived lateritic soil stabilized with cement kiln dust (CKD), a waste product from the cement manufacturing process as liner in waste repositories. Lateritic soil sample mixed with 0–16 % CKD (by dry weight of the soil) was compacted with the British Standard Light, West African Standard and British Standard Heavy compaction efforts at water contents ranging from the dry to wet of optimum moistures. Geotechnical parameters such as Atterberg limits, compaction characteristics, hydraulic conductivity, unconfined compressive strength and volumetric shrinkage strain were determined. Results indicate that the plasticity index, the maximum dry unit weight and hydraulic conductivity together with the volumetric shrinkage decreased with increased amount of CKD while the optimum moisture content and unconfined compressive strength increased with higher CKD content for all the efforts. When measured properties were compared with standard specifications adopted by most environmental regulatory agencies for the construction of barrier systems in waste containment structures, the resulting values showed substantial compliance. Besides developing an economically sustainable liner material, the present study demonstrated effective utilization of an industrial by-product otherwise considered as waste by the producers, in addition to a systematic expansion in the use of the lateritic soil for geotechnical works.  相似文献   

17.
The climatic zones where residual soils occur are often characterized by alternate wet and dry seasons. Laboratory studies of earlier workers have established that the alternate wetting and drying process affects the swell-shrink potentials, water content, void ratio and particle cementation of expansive soils. The influence of cyclic wetting and drying on the collapse behaviour of residual soils has not been examined. This paper examines the influence of alternate wetting and drying on the collapse behaviour of compacted residual soil specimens from Bangalore District. Results of such a study are useful in anticipating changes in collapse behaviour of compacted residual soil fills. Experimental results indicated that the cyclic wetting and drying process increased the degree of expansiveness of the residual soils and reduced their collapse tendency. Changes in the swell/collapse behaviour of compacted residual soil specimens from wetting drying effects are attributed to reduction in water content, void ratio and possible growth of cementation bonds.  相似文献   

18.
南阳膨胀土的工程地质特征和填筑适宜性   总被引:5,自引:1,他引:4  
冯玉勇  徐卫亚  王思敬  曲永新 《岩土力学》2005,26(10):1645-1651
施工阶段的工程地质调查发现,宁(南京)西(西安)铁路内乡-镇平段南阳膨胀土成因类型上不仅有第四系冲积洪积粘土,而且发育上第三系湖相沉积粘土。不同成因的膨胀土具有不同的空间分布特征和工程性质,X射线衍射测试表明,南阳膨胀土的主要膨胀性粘土矿物是伊利石/蒙脱石混层矿物。物质组成和物理化学性质差异导致击实土在含水量变化条件下膨胀力和膨胀变形有明显的差别;对同一种膨胀土材料,其击实含水量越小,膨胀性越强,甚至含水量降低1 %~2 %,膨胀力就可以增加到200 %以上;击实膨胀土的直剪强度受到钙质结核含量的影响,对于膨胀势为高或强的膨胀土,结核含量小于15 % 时,经过干湿循环后直剪强度衰减量为40 %~65 %,结核含量为25 %~30 % 的强膨胀土直剪强度衰减量则低于30 %;对膨胀土的地质特征、工程性质、击实土的膨胀性和直剪试验结果进行分析,探讨其用于填筑铁路路基的适宜性,进行了填筑适宜性分级。依据研究成果制定的路基施工工艺取得了比较理想的工程效果  相似文献   

19.
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg’s limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.  相似文献   

20.
Soils containing expansive clays undergo swelling that can be both detrimental and beneficial in various applications. In the Arabian Gulf coastal region, natural heterogeneous soils containing clay and sand (tills, shales, and clayey sands) support most of the civil infrastructure systems. Likewise, mixes of clay and sand are used for local earthwork construction such as roads and landfills. A clear understanding of the swelling behaviour of such soils is pivotal at the outset of all construction projects. The main objective of this paper was to understand the evolution of swelling with increasing clay content in local soils. A theoretical framework for clay–sand soils was developed using phase relationships. Laboratory investigations comprised of mineralogical composition and geotechnical index properties of the clay and sand and consistency limits, swelling potential, and morphology of clay–sand mixes. Results indicated that soil consistency of mixes of a local expansive clay and an engineered sand depends on the weighted average of the constituents. Mixes with 10% clay through 40% clay capture the transition from a sand-like behaviour to a clay-like behaviour. Influenced by the initial conditions and soil matrix, the swelling potential of the investigated mixes correlated well with soil plasticity (SP(%) = 0.16 (I p)1.188). The parameters sand void ratio and clay–water ratio were found to better explain the behaviour of blended clay–sand soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号