首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
This paper investigates the non-linear in-plane buckling of pin-ended shallow circular arches with elastic end rotational restraints under a central concentrated load. A virtual work method is used to establish both the non-linear equilibrium equations and the buckling equilibrium equations. Analytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifurcation buckling loads are obtained. It is found that the effects of the stiffness of the end rotational restraints on the buckling loads, and on the buckling and postbuckling behaviour of arches, are significant. The buckling loads increase with an increase of the stiffness of the rotational restraints. The values of the arch slenderness that delineate its snap-through and bifurcation buckling modes, and that define the conditions of buckling and of no buckling for the arch, increase with an increase of the stiffness of the rotational end restraints.  相似文献   

2.
This paper is concerned with an analytical study of the non-linear elastic in-plane behaviour and buckling of pinned–fixed shallow circular arches that are subjected to a central concentrated radial load. Because the boundary conditions provided by the pinned support and fixed support of a pinned–fixed arch are quite different from those of a pinned–pinned or a fixed–fixed arch, the non-linear behaviour of a pinned–fixed arch is more complicated than that of its pinned–pinned or fixed–fixed counterpart. Analytical solutions for the non-linear equilibrium path for shallow pinned–fixed circular arches are derived. The non-linear equilibrium path for a pinned–fixed arch may have one or three unstable equilibrium paths and may include two or four limit points. This is different from pinned–pinned and fixed–fixed arches that have only two limit points. The number of limit points in the non-linear equilibrium path of a pinned–fixed arch depends on the slenderness and the included angle of the arch. The switches in terms of an arch geometry parameter, which is introduced in the paper, are derived for distinguishing between arches with two limit points and those with four limit points and for distinguishing between a pinned–fixed arch and a beam curved in-elevation. It is also shown that a pinned–fixed arch under a central concentrated load can buckle in a limit point mode, but cannot buckle in a bifurcation mode. This contrasts with the buckling behaviour of pinned–pinned or fixed–fixed arches under a central concentrated load, which may buckle both in a bifurcation mode and in a limit point mode. An analytical solution for the limit point buckling load of shallow pinned–fixed circular arches is also derived. Comparisons with finite element results show that the analytical solutions can accurately predict the non-linear buckling and postbuckling behaviour of shallow pinned–fixed arches. Although the solutions are derived for shallow pinned–fixed arches, comparisons with the finite element results demonstrate that they can also provide reasonable predictions for the buckling load of deep pinned–fixed arches under a central concentrated load.  相似文献   

3.
The elastic buckling analysis and the static postbuckling response of the Euler–Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.  相似文献   

4.
The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.  相似文献   

5.
Classical buckling theory is mostly used to investigate the in-plane stability of arches, which assumes that the pre-buckling behaviour is linear and that the effects of pre-buckling deformations on buckling can be ignored. However, the behaviour of shallow arches becomes non-linear and the deformations are substantial prior to buckling, so that their effects on the buckling of shallow arches need to be considered. Classical buckling theory which does not consider these effects cannot correctly predict the in-plane buckling load of shallow arches. This paper investigates the in-plane buckling of circular arches with an arbitrary cross-section and subjected to a radial load uniformly distributed around the arch axis. An energy method is used to establish both non-linear equilibrium equations and buckling equilibrium equations for shallow arches. Analytical solutions for the in-plane buckling loads of shallow arches subjected to this loading regime are obtained. Approximations to the symmetric buckling of shallow arches and formulae for the in-plane anti-symmetric bifurcation buckling load of non-shallow arches are proposed, and criteria that define shallow and non-shallow arches are also stated. Comparisons with finite element results demonstrate that the solutions and indeed approximations are accurate, and that classical buckling theory can correctly predict the in-plane anti-symmetric bifurcation buckling load of non-shallow arches, but overestimates the in-plane anti-symmetric bifurcation buckling load of shallow arches significantly.  相似文献   

6.
The static stability of thin-walled composite beams, considering shear deformation and geometrical non-linear coupling, subjected to transverse external force has been investigated in this paper. The theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field (accounting for bending and warping shear) considering moderate bending rotations and large twist. This non-linear formulation is used for analyzing the prebuckling and postbuckling behavior of simply supported, cantilever and fixed-end beams subjected to different load condition. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results show that the beam loses its stability through a stable symmetric bifurcation point and the postbuckling strength is in relation with the buckling load value. Classical predictions of lateral buckling are conservative when the prebuckling displacements are not negligible and the non-linear buckling analysis is required for reliable solutions. The analysis is supplemented by investigating the effects of the variation of load height parameter. In addition, the critical load values and postbuckling response obtained with the present beam model are compared with the results obtained with a shell finite element model (Abaqus).  相似文献   

7.
Exact solution and stability of postbuckling configurations of beams   总被引:1,自引:0,他引:1  
We present an exact solution for the postbuckling configurations of beams with fixed–fixed, fixed–hinged, and hinged–hinged boundary conditions. We take into account the geometric nonlinearity arising from midplane stretching, and as a result, the governing equation exhibits a cubic nonlinearity. We solve the nonlinear buckling problem and obtain a closed-form solution for the postbuckling configurations in terms of the applied axial load. The critical buckling loads and their associated mode shapes, which are the only outcome of solving the linear buckling problem, are obtained as a byproduct. We investigate the dynamic stability of the obtained postbuckling configurations and find out that the first buckled shape is a stable equilibrium position for all boundary conditions. However, we find out that buckled configurations beyond the first buckling mode are unstable equilibrium positions. We present the natural frequencies of the lowest vibration modes around each of the first three buckled configurations. The results show that many internal resonances might be activated among the vibration modes around the same as well as different buckled configurations. We present preliminary results of the dynamic response of a fixed–fixed beam in the case of a one-to-one internal resonance between the first vibration mode around the first buckled configuration and the first vibration mode around the second buckled configuration.  相似文献   

8.
This paper presents a theoretical analysis for the long-term non-linear elastic in-plane behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches. It is known that an elastic shallow arch does not buckle under a load that is lower than the critical loads for its bifurcation or limit point buckling because its buckling equilibrium configuration cannot be achieved, and the arch is in a stable equilibrium state although its structural response may be quite non-linear under the load. However, for a CFST arch under a sustained load, the visco-elastic effects of creep and shrinkage of the concrete core produce significant long-term increases in the deformations and bending moments and subsequently lead to a time-dependent change of its equilibrium configuration. Accordingly, the bifurcation point and limit point of the time-dependent equilibrium path and the corresponding buckling loads of CFST arches also change with time. When the changing time-dependent bifurcation or limit point buckling load of a CFST arch becomes equal to the sustained load, the arch may buckle in a bifurcation mode or in a limit point mode in the time domain. A virtual work method is used in the paper to investigate bifurcation and limit point buckling of shallow circular CFST arches that are subjected to a sustained uniform radial load. The algebraically tractable age-adjusted effective modulus method is used to model the time-dependent behaviour of the concrete core, based on which solutions for the prebuckling structural life time corresponding to non-linear bifurcation and limit point buckling are derived.  相似文献   

9.
10.
11.
The numerical structural analysis schemes are extensively developed by progress of modern computer processing power. One of these approximate approaches is called "dynamic relaxation (DR) method." This technique explicitly solves the simultaneous system of equations. For analyzing the static structures, the DR strategy transfers the governing equations to the dynamic space. By adding the fictitious damping and mass to the static equilibrium equations, the corresponding artificial dynamic system is achieved. The static equilibrium path is required in order to investigate the structural stability behavior. This path shows the relationship between the loads and the displacements. In this way, the critical points and buckling loads of the non-linear structures can be obtained. The corresponding load to the first limit point is known as buckling limit load. For estimating the buckling load, the variable load factor is used in the DR process. A new procedure for finding the load factor is presented by imposing the work increment of the external forces to zero. The proposed formula only requires the fictitious parameters of the DR scheme. To prove the efficiency and robustness of the suggested algorithm, various geometric non-linear analyses are performed. The obtained results demonstrate that the new method can successfully estimate the buckling limit load of structures.  相似文献   

12.
The objective of the present investigation is to predict the nonlinear buckling and postbuckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic pressure load in the presence of surface free energy effects.To this end, Gurtin-Murdoch elasticity theory is implemented into the irst-order shear deformation shell theory to develop a size-dependent shell model which has an excellent capability to take surface free energy effects into account. A linear variation through the shell thickness is assumed for the normal stress component of the bulk to satisfy the equilibrium conditions on the surfaces of nanoshell. On the basis of variational approach and using von Karman-Donnell-type of kinematic nonlinearity, the non-classical governing differential equations are derived. Then a boundary layer theory of shell buckling is employed incorporating the effects of surface free energy in conjunction with nonlinear prebuckling deformations, large delections in the postbuckling domain and initial geometric imperfection. Finally, an eficient solution methodology based on a two-stepped singular perturbation technique is put into use in order to obtain the critical buckling loads and postbuckling equilibrium paths corresponding to various geometric parameters. It is demonstrated that the surface free energy effects cause increases in both the critical buckling pressure and critical end-shortening of a nanoshell made of silicon.  相似文献   

13.
This paper focuses on the development of the partitioned solution method (PSM) for analyzing the stability behavior of doubly-curved shallow orthotropic panels under external pressure, covering both the buckling and postbuckling responses. Adjacent equilibrium method (AEM) is used to verify the developed PSM method and the associated stability results. The equilibrium and compatibility equations are derived using Donnell-type thin shell theory, with the Airy stress function and the out-of-plane displacement as unknowns. Based on AEM and PSM, both an eigenvalue problem and non-linear algebraic equations are obtained which are used as the basis for the stability criteria, respectively. Results obtained from those two methods are presented and compared with each other for a few arbitrary sets of system parameters, wherein no postbuckling solutions are presented with AEM. The influence of the boundary conditions on the stability behavior is also investigated using the PSM.  相似文献   

14.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedshellstructuresarewidelyusedintheaerospace ,marineindustry ,automobileindustryandotherengineeringapplications.Duringtheoperationallife ,thevarianceoftemperatureandmoisturereducestheelasticmoduli…  相似文献   

15.
A general qualitative approach for dynamic buckling and stability of autonomous dissipative structural systems is comprehensively presented. Attention is focused on systems which under the same statically applied loading exhibit a limit point instability or an unstable branching point instability with a non-linear fundamental path. Using the total energy equation, the theory of point and periodic attractors of the basin of attraction of a stable equilibrium point, of local and global bifurcations, of the inset and outset manifolds of a saddle and of the geometry of the channel of motion, the stability of the fundamental equilibrium path and the mechanism of dynamic buckling are thoroughly discussed. This allows us to establish useful qualitative criteria leading to exact, approximate and upper/lower bound buckling estimates without integrating the highly non-linear initial-value problem. The individual and coupling effect of geometric and material non-linearities of damping and mass distribution on the dynamic buckling load are also examined. A comparison of the results of the above qualitative analysis with those obtained via numerical simulation is performed on several two- and three-degree-of-freedom models of engineering importance.  相似文献   

16.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

17.
Arches are often supported elastically by other structural members. This paper investigates the in-plane nonlinear elastic behaviour and stability of elastically supported shallow circular arches that are subjected to a radial load uniformly distributed around the arch axis. Analytical solutions for the nonlinear behaviour and for the nonlinear buckling load are obtained for shallow arches with equal or unequal elastic supports. It is found that the flexibility of the elastic supports and the shallowness of the arch play important roles in the nonlinear structural response of the arch. The limiting shallownesses that distinguish between the buckling modes are obtained and the relationship of the limiting shallowness with the flexibility of the elastic supports is established, and the critical flexibility of the elastic radial supports is derived. An arch with equal elastic radial supports whose flexibility is larger than the critical value becomes an elastically supported beam curved in elevation, while an arch with one rigid and one elastic radial support whose flexibility is larger than the critical value still behaves as an arch when its shallowness is higher than a limiting shallowness. Comparisons with finite element results demonstrate that the analytical solutions and the values of the critical flexibility of the elastic supports and the limiting shallowness of the arch are valid.  相似文献   

18.
In this paper, the postbuckling behavior of rectangular orthotropic laminated composite plates with initial imperfections under inplane shear load is investigated in a closed-form analytical manner. The plates under consideration are assumed to be infinitely long in the longitudinal direction. At the longitudinal edges, two different sets of boundary conditions are considered, specifically 1) simply supported edges and 2) fully clamped edges. Using Timoshenko-type shape functions for both the initial bifurcational buckling analysis and the subsequent Marguerre-type postbuckling studies, closed-form analytical solutions for the buckling loads and for the postbuckling state variables are derived. A comparison with geometrically non-linear finite element computations shows that the derived analysis approaches are suitable for postbuckling studies in load ranges not too far beyond bifurcational buckling as they are currently relevant for e.g., composite airframe structural analysis and design. Due to their strictly closed-form analytical nature, the presented analysis methods can be used conveniently in engineering practice for all application purposes where computational time is a crucial factor, especially for preliminary analysis and design or optimization procedures.  相似文献   

19.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

20.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号