首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Doxorubicin‐loaded poly(butylcyanoacrylate) (PBCA) nanoparticles (NPs) were prepared by an emulsifier‐free emulsion polymerization technique. The pH values of the polymerization medium and the weight ratios of doxorubicin to butylcyanoacrylate had a significant effect on the mean particle size. The particle diameter determined by transmission electron microscopy showed that the nanoparticles were predominantly less than 50 nm. Drug loading and entrapment efficiency increased with increasing pH of the medium. The surface tension of the polymerization media increased with increasing polymerization time and reached a plateau after 4 h. Doxorubicin‐loaded PBCA NPs carried a positive charge, and the zeta potential of drug‐loaded nanoparticles increased with the increase of the polymerization pH. Molecular weight, analyzed by gel permeation chromatography, showed that the nanoparticles mainly consisted of oligomers of PBCA. The release rate of doxorubicin from nanoparticles in biological phosphate buffer was very slow, with a half‐life of 111.43 h. The results indicate that drug‐loaded nanoparticles can be prepared by an emulsifier‐free emulsion polymerization technique and that the resulting nanoparticles might be suitable for targeting drug delivery vehicles for clinical application. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 517–526, 2000  相似文献   

2.
Binary and ternary blends composed of poly(lactic acid) (PLA), starch, and poly(ethylene glycols) (PEGs) with different molecular weights (weight‐average molecular weights = 300, 2000, 4000, 6000, and 10, 000 g/mol) were prepared, and the plasticizing effect and miscibility of PEGs in poly(lactic acid)/starch (PTPS) or PLA were intensively studied. The results indicate that the PEGs were effective plasticizers for the PTPS blends. The small‐molecule plasticizers of PEG300 (i.e., the Mw of PEG was 300g/mol) and glycerol presented better plasticizing effects, whereas its migration and limited miscibility resulted in significant decreases in the water resistance and elongation at break. PEG2000, with a moderate molecular weight, was partially miscible in sample PTPS3; this led to better performance in water resistance and mechanical properties. For higher molecular weight PEG, its plasticization for both starch and PLA was depressed, and visible phase separation also occurred, especially for PTPS6. It was also found that the presence of PEG significantly decreased the glass‐transition temperature and accelerated the crystallization of the PLA matrix, depending on the PEG molecular weight and concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41808.  相似文献   

3.
In this study, the special adjusting‐temperature function of polyethylene glycol (PEG) with low molecular weight was introduced. PEGs and a two‐group mixing system of PEGs of different molecular weights were added to fabrics, respectively, and the thermal activities of modified fabrics were studied. In addition, the thermal stability of PEG and fabric at a higher curing temperature was also discussed in detail. The results showed that the thermal properties of PEG decreased after being crosslinked to fabrics and the thermal activity parameters of treated fabrics could be changed and adjusted by selecting an appropriate two‐group mixing system. Some thermolysis and thermooxidative degradation of PEG and fabric used in the investigations might take place at higher curing temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2288–2292, 2003  相似文献   

4.
Poly (ethylene glycol)-poly (n-butyl cyanoacrylate) (PEG-PBCA) is a remarkable drug delivery carrier for permeating blood-brain barrier. In this work, a novel high-gravity procedure was reported to intensify Knoevenagel condensation-Michael addition polymerization of PEG-PBCA. A series of PEG-PBCA containing different block ratios were synthesized with narrow molecular weight distribution of polydispersity indexes less than 1.1. Furthermore, the reaction time reduced 60% compared to conventional stirred tank reactor process. Chemical structures of as-prepared polymers were characterized. In vitro drug delivery performance was evaluated. The cytotoxicity of PEG-PBCA to brain microvessel endothelial cells (BMVEC) decreases with the extension of the PEG chain and the shortening of the PBCA chain. The polymer cellular uptake to BMVECs was better after improving hydrophilicity by PEG block. Results of blood-brain barrier permeability demonstrated that medium length of PBCA chain and short PEG chain are favorable for hydrophobic Nile red permeation, while long PEG chain and short PBCA chain are beneficial to delivery water-soluble doxorubicin hydrochloride (Dox). The average apparent permeability coefficient increased 1.7 and 0.25 times than that of raw Nile red and Dox, respectively. High-gravity intensified condensation polymerization should have great potential in brain drug delivery system.  相似文献   

5.
Hydrogenation of olefins catalyzed by palladium nanoparticles dispersed in polyethylene glycols (PEGs) was carried out. It was shown that Pd nanoparticles in PEG800 (PEG with an average molecular weight of 800 g/mol), PEG1000, and PEG2000 were very active, stable, and selective for hydrogenation of a range of olefins at mild conditions. For simple alkenes like cyclohexene, the pure products were isolated by simple decantation because the miscibility of the products and the PEGs was extremely poor. For olefins with polar groups, the CC double bonds were selectively hydrogenated with 100% selectivity. The reusability of Pd-PEG2000 was tested, and deactivation of the catalyst was not detectable after 10 recycles.  相似文献   

6.
《分离科学与技术》2012,47(5):963-978
Abstract

The permeate flux and retention of aqueous solutions of poly(ethylene glycols) (PEG) with different molecular weights ranging from 4000 to 35,000 Da have been investigated using various compositions such as 100/0, 90/10, 80/20, and 70/30 wt% of cellulose acetate (CA)/sulfonated poly(etheretherketone) (SPEEK) ultrafiltration blend membranes. The factors affecting the rejection rate and permeate flux such as molecular weight of PEGs, concentration of the solute, composition of the membranes, and transmembrane pressures have been studied. It is seen that the increase in the concentration of PEG results in the decreased permeate flux and increased rejection for increasing CA content in the membranes. A similar observation in the flux and rejection was made for increasing the molecular weight of PEGs. Further, the mass transfer, diffusion, and true retention coefficients of the solute have been studied with different operating variables like molecular weight and concentration of PEGs. An increase in the molecular weight of PEGs results in the decrease of mass transfer and diffusion coefficients and increase of the true retention coefficient. A reverse trend is observed with increasing concentrations of PEG.  相似文献   

7.
Polyethylene glycol (PEG)‐sugar composites have been investigated as cost effective shape‐stabilized phase change materials for thermal energy storage. PEGs form internal hydrogen bonds stabilizing their chains at solid state. However low molecular weight PEGs are liquid due to short chains as high molecular weight PEGs have too little concentration of hydroxyl groups. Therefore, glucose, fructose, and lactose are used as hydrogen bond source in this study. Consequently it is found that sugars stabilized PEGs up to 90% PEG constitution in solid state except for 90%PEG10,000/10% fructose blend. Fourier transform‐infrared (FT‐IR) analysis revealed considerable interactions between PEGs. The maximum changes in the spectra were observed in the OH stretching region as band broadening due to increasing hydrogen bonding interactions. Differential scanning calorimetry (DSC) analysis are used to determine phase change temperatures and enthalpy of the shape‐stabilized composites that are slightly lower than those of PEG precursors due to the interference effect of sugar in crystallization process. The enthalpies of the blends are 89%, 95%, and 94% of expected from 90%PEG/10% glucose blends, 93%, 94%, and 93% of expected from 90% PEG/10% fructose blends, and 99%, 96%, and 96% of expected from 90% PEG/10% lactose blends respectively when PEGs with 1,000; 6,000; and 10,000 g/mol average molecular weights are used respectively. The diameter of the spherulitic crystals of PEGs decreases with the addition of any of sugar derivatives and spherulites of the composites turns to semi‐amorphous solid structures at temperatures above melting point of PEG precursor. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
By using fluorescent polysorbate 80 coated poly(n-butylcyanoacrylate) (PBCA) nanoparticles in an in vivo study, direct evidence was found for the presence of nanoparticles entering the brain and retina of rats. The nanoparticles, prepared with a miniemulsion process, were labeled in situ with a fluorescent dye and coated with polysorbate 80. After preparation the particle size, zeta potential, and the molecular weight distribution were determined. BMEC cells were used as an in vitro model for the BBB. The cells showed significant uptake of the particles, but no transcytosis could be observed in vitro. After applying the particles to the animals at two concentrations, cryosections of the brains and retinas were prepared. Regarding the sections of the rats that received the lower dose, co-localization of the applied fluorescent particles and the stained endothelial cells could be detected in the brain and retina, indicating particle internalization in the endothelial cells. Applied at higher doses, the particles could be detected within the brain and retina with few co-localized signals, suggesting passage through the blood-brain and blood-retina barriers.  相似文献   

9.
采用物理共混和化学方法合成了PEG/PET固固相转变材料(PCM),这种材料在能量储存和温度控制领域有广泛的应用.不同制品对材料的相变性能要求不同.通过对合成方法、交联体系、PEG的相对分子质量及不同相对分子质量PEG共晶和PEG/PET的配比等影响因素的调节来控制该材料的相变性能.  相似文献   

10.
Gene transfection is a valuable tool for analyzing gene regulation and function, and providing an avenue for the genetic engineering of cells for therapeutic purposes. Though efficient, the potential concerns over viral vectors for gene transfection has led to research in non-viral alternatives. Cationic polyplexes such as those synthesized from chitosan offer distinct advantages such as enhanced polyplex stability, cellular uptake, endo-lysosomal escape, and release, but are limited by the poor solubility and viscosity of chitosan. In this study, the easily synthesized biocompatible and biodegradable polymeric polysorbate 80 polybutylcyanoacrylate nanoparticles (PS80 PBCA NP) are utilized as the backbone for surface modification with chitosan, in order to address the synthetic issues faced when using chitosan alone as a carrier. Plasmid DNA (pDNA) containing the brain-derived neurotrophic factor (BDNF) gene coupled to a hypoxia-responsive element and the cytomegalovirus promotor gene was selected as the genetic cargo for the in vitro transfection-guided neural-lineage specification of mouse induced pluripotent stem cells (iPSCs), which were assessed by immunofluorescence staining. The chitosan-coated PS80 PBCA NP/BDNF pDNA polyplex measured 163.8 ± 1.8 nm and zeta potential measured −34.8 ± 1.8 mV with 0.01% (w/v) high molecular weight chitosan (HMWC); the pDNA loading efficiency reached 90% at a nanoparticle to pDNA weight ratio of 15, which also corresponded to enhanced polyplex stability on the DNA stability assay. The HMWC-PS80 PBCA NP/BDNF pDNA polyplex was non-toxic to mouse iPSCs for up to 80 μg/mL (weight ratio = 40) and enhanced the expression of BDNF when compared with PS80 PBCA NP/BDNF pDNA polyplex. Evidence for neural-lineage specification of mouse iPSCs was observed by an increased expression of nestin, neurofilament heavy polypeptide, and beta III tubulin, and the effects appeared superior when transfection was performed with the chitosan-coated formulation. This study illustrates the versatility of the PS80 PBCA NP and that surface decoration with chitosan enabled this delivery platform to be used for the transfection-guided differentiation of mouse iPSCs.  相似文献   

11.
Blends consisting of biodegradable polylactide (PLA) and poly(ethylene glycol) (PEG) were investigated for their usefulness as an environmentally friendly herbicide formulation with prolonged activity. The aim of this study was to evaluate the release rate of selected soil-applied herbicides from the PLA/PEG blend containing PEG of various molecular weights and to assess the phytotoxicity of the PEGs according to OECD 208 guidelines. The release rate of immobilized herbicides was correlated with degradation of the blends used. The progress of PLA/PEG blend degradation in water, soil, and activated sludge was estimated by sample weight loss, changes in blend composition, and microscopic observations of the blend surfaces during the experiment. The proposed formulation of the immobilized herbicide in a blend consisting of slowly biodegradable PLA and water-soluble PEG provides the possibility to release the herbicides for a relatively long time, for approximately six months, which is a demand of weed management. The effect of PEGs on plant growth and development was dependent on both their concentration and molecular weight. With a higher concentration in soil and a higher molecular weight of PEG, a more harmful effect on plants was noticed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47856.  相似文献   

12.
Osmotic drying of gelcast alumina bodies was carried out in water solutions of various polyethylene glycols (PEGs) with molecular weight ranging from 1000 to 80,000 g/mol. Up to 30% of the water content could be removed from the gelcast bodies immersed in a 43 wt% solution of PEG 80000. It was found that PEG 1000 was a less effective desiccant than the PEGs with higher molecular weights, even if the osmotic pressure was similar (4.9 MPa). The smaller PEG molecules penetrated the gelled bodies and reduced the dewatering. Moreover, the penetrated PEG molecules affected the pore structure of green bodies and in this way influenced the sintering behaviour. The time dependence of dewatering and the effect of the size of gelcast bodies were investigated and correlated with the green body structure and sintering behaviour in order to optimize the osmotic drying process.  相似文献   

13.
A new series of amphiphilic graft‐copolymers, composed of poly(vinyl chloride) (PVC) backbones and poly(ethylene oxide) side chains, was synthesized by chemical modification of PVC. The synthesis was based on the reaction between chlorine in PVC (polymerization degree 700) and sodium salt of polyethylene glycol (PEG). PEGs with molecular weights of 200 and 600 were used. The graft polymers were characterized by IR and gel permeation chromatography and the molecular parameters such as the average numbers of grafting chains on the PVC backbones were calculated as well as the grafting percent. The molecular weights of PEG were found to influence the rate of the grafting reaction and the final degree of conversion. The maximum grafting percentage of the resulted polymers after the purification was ca. 34%, regardless of the molecular weight of PEG. No gel was observed in the PVC‐g‐PEOs, in spite of the average numbers of grafting chains up to 32. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 475–479, 2000  相似文献   

14.
Studies have been carried out on polyurethane elastomers based on modified castor oil in combination with different molecular weights of polyethylene glycol and polymeric methylene diphenyl-4,4′-diisocyanate (PMDI). The resulting polymers were cast into molds and the moldings were characterized by scanning electron microscopy and thermogravimetric analysis. Mechanical properties such as tensile strength, elongation at break, hardness, abrasion resistance, and compression set were measured. There is an increase in the flexibility of polyurethanes with increase in molecular weight of PEGs added to modified castor oil.  相似文献   

15.
The inhibition effect of some PEGs on carbon steel corrosion at 25 °C in 0.5N hydrochloric acid as corroding solution was evaluated by weight loss method and polarization and electrochemical impedance spectroscopy (EIS) techniques. In order to study the effect of polyethylene glycols’ structure on the inhibition efficiency, different molecular weights (400, 1000, 4000, and 10,000 g mol−1) were selected. This work has demonstrated that polyethylene glycols have inhibition effect on corrosion process and their inhibition efficiencies are between 50 and 90%. The inhibition efficiencies are increased by increase of the inhibitors’ concentration and molecular weight.  相似文献   

16.
A new amphiphilic polymer i.e., polyethylene glycol (PEG) grafted crystalline neoprene, which was used as compatibilizer to improve the compatibility of elastomer and water-absorbent resin, has been investigated. The synthesis was based on the reaction between chlorine in neoprene and sodium salts of PEG. PEGs with molecular weights of 600 and 2000 were used. The grafting percent and the PEG content were calculated through elemental analysis of chlorine in the resulted copolymers. The maximum grafting percent of copolymers was ca. 24.80%. The molecular parameters such as number-average molecular weight and the average number of grafting chains on one CR backbone were also calculated and discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The rheology of solutions of extracts from the bark of Pinus radiata was investigated in the presence of poly(ethylene glycol)s (PEGs) of different molecular weights. PEG with a molecular weight of 4600 (1% w/w) was sufficient to reduce the viscosity of a concentrated (40% w/w) pine tannin extract by one order of magnitude. The reduction of the viscosity was due to the inhibition of molecular association via hydrogen bonding and hydrophobic interactions between tannin and PEG and depended on the molecular weight of PEG. PEG effectively reduced the viscosity of polyphenolic tannins but retained high reactivity toward paraformaldehyde for adhesive formulations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1254–1260, 2005  相似文献   

18.
聚醚增韧酚醛树脂及其泡沫的研究   总被引:5,自引:3,他引:5  
本文介绍了两类聚醚改性剂-PEG和活性聚醚增韧酚醛树脂及其泡沫的方法和工艺。对一系列不同分子量PEG和活性聚醚改性酚醛树脂的力学性能进行了比较,同时研究了各种改性酚醛泡沫的尺寸稳定性、压缩强度及表观密度等;并对几种改性酚醛泡沫和未改性酚醛泡沫进行了电子显微镜扫描泡孔结构的研究和红外分析;结果表明,树脂中导入活性聚醚的柔性链段,可使酚醛树脂及其泡沫的韧性及综合性能得到明显的改善,其中尤以分子量为1000活性聚醚改性树脂及其泡沫的各种性能为优。  相似文献   

19.
To improve the processability of micropolymer‐based devices used for biomedical applications, poly(lactic acid) (PLA) was melt‐blended with poly(ethylene glycol)s (PEGs) of different molecular weights (MWs; weight‐average MWs = 200, 800, 2000, and 4000; these PEGS are referred to as PEG200, PEG800, PEG2000, and PEG4000, respectively, in this article). The thermal properties, mechanical properties, and rheological properties of the PLA and the PLA–PEG blends were investigated. The tensile samples’ morphologies showed that the low‐MW PEGs filled molds well. The rheological properties confirmed that the low‐MW PEGs decreased the complex viscosity, and improved the processability. With decreasing PEG MW, the PLA glass‐transition temperature decreased. The nanoindenter data show that the addition of PEG decreased the modulus and hardness of PLA. The morphologies of the tensile samples showed that with increasing PEG MW, the thicknesses of the core layers increased gradually. The elongation at break was improved by approximately 247% with the addition of PEG200. Such methods can produce easily processed biological materials for producing biomedical products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45194.  相似文献   

20.
The aim of this study was to show the hemocompatibility, cytotoxicity, and genotoxicity of nanocomposites that were synthesized with different molecular weights of poly(methyl methacrylate) (PMMA) and different concentrations of nanohydroxyapatite (nHAp). Different techniques to characterize the nanocomposites were used. The cytotoxicity and genotoxic effects of the polymers and nanocomposites on human lymphocytes were determined by acid phosphatase assay, viability test, and comet assay. Moreover, hemocompatibility test was performed. It was found that all of the PMMA/nHAp nanocomposites are highly hemocompatible and biocompatible, none of the nanocomposites showed a cytotoxic effect, and nHAp addition decreased the genotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号