首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The positions and shapes of the Raman E 1 and E 1 + Δ1 resonances of optical phonons are studied as functions of the size of unstrained germanium quantum dots. The quantum dots are grown by molecular-beam epitaxy in GaAs/ZnSe/Ge/ZnSe structures on GaAs(111) wafers. The positions of the E 1 and E 1 + Δ1 resonances are found to shift by at most 0.3 eV. This shift is shown to be well described in terms of a cylindrical model using the quantization of the spectrum of bulk electron-hole states in germanium that form an exciton in a two-dimensional critical point. The fact that the peaks of the E 1 and E 1 + Δ1 resonances appear separately has been detected for the first time, and it is related to the transformation of the interband density of states into a delta function because of spectrum quantization. An increase in the resonance amplitudes in quantum dots as compared to the bulk case is related to the degeneracy multiplicity of the exciton state in the (111) direction.  相似文献   

2.
Electron energy loss spectra of clean Ni(1 0 0) show for the first time a 17 eV peak, which is attributed to an interband transtiion. All the observed peaks are shifted to higher energies as the primary electron energy Ep increases from 102 to 2045 eV. This shift is explained by a continuous decay in energy of the primary electrons inside the crystal. At Ep ? 700 eV, the decay takes place in the surface region of the crystal, while at Ep > 700 eV it takes place mainly in the bulk. The rate of decay increases with increasing temperature of the crystal between 300 and 900 K.  相似文献   

3.
Nature of the characteristic electron energy losses in the second electron emission spectra from the ternary Co-Cr-Mo alloy surface are studied in the low energy range of the primary electron energy E0. The main types of losses were found: surface and bulk plasmons and their hybrid modes, interband transitions and ionization losses. For Co, Cr, Mo and Co-Cr-Mo alloy the experimental values of the plasmon energy were established to be less than it was predicted by free-electron gas model. Excess of conductive electrons in the surface layers for Co, Cr and Mo was observed by dependence of the surface plasmon dispersion from E0, while for Co-Cr-Mo alloy the situation is quit opposite. Such behavior is explained by the complex phase structure of the ternary alloy. The analysis of intensity lines of plasmons from E0 showed deeply changed alloy profile. Ionization Spectroscopy was used for studying the alloy elements distributing on the depth. Mo atoms preferred segregation in the outermost layers of Co-Cr-Mo alloy and enrichment with Cr competitive atoms in underlayers is displayed.  相似文献   

4.
A direct experimental study of the diffusion of carbon atoms between the (100)Mo surface and the bulk has been carried out at process temperatures in the range 1400–2000 K, and the total balance of carbon atoms in the system has been determined. The difference in the activation energies of carbon dissolution and precipitation ΔE=E S 1?E 1 S has been found under conditions of a dynamic equilibrium between both processes. This difference determines the temperature dependence of the degree of surface enrichment with carbon in reference to the bulk. The activation energy of the dissolution of carbon atoms has been determined in special experiments (E S 1=3.9 eV), and the activation energy of the precipitation of carbon atoms E 1 S has been calculated (E 1 S =1.9 eV), which turns out to be close to the energy of carbon bulk diffusion in molybdenum.  相似文献   

5.
The effect of doping with Cr on the electronic structure and magnetism of Co3Al has been studied by density functional calculations. It has been found that the Cr atom has a strong site preference for the B-site in Co3Al. With the substitution of Cr for Co, the total densities of states (DOS) change obviously: A DOS peak appears at EF in the majority spin states and an energy gap is opened in the minority spin states. The effect of Cr in Co3Al is mainly to push the antibonding peak of the Co (A,C) atoms high on the energy scale and to form the energy gap around EF, and also to contribute to the large DOS peak at EF in the majority spin direction. The calculations indicate a ferromagnetic alignment between the Co and Cr spin moments. The calculated total magnetic moment decreases and becomes closer to the Slater–Pauling curve with increasing Cr content. This is mainly due to the decrease of the Co (A,C) spin moments. At the same time, the moments of Co (B) and Cr (B) only change slightly.  相似文献   

6.
In the present work, experimental and computer simulation studies of low-energy (E0 = 80-500 eV) Cs+ ions scattering on Ta, W, Re target surfaces and K+ ions scattering on Ti, V, Cr target surfaces have been performed for more accurate definition of mechanism of scattering, with a purpose of evaluation of an opportunity of use of slow ions scattering as a tool of surface layers analysis. The choice of the targets was based on the fact that the ratios of atomic masses of target atoms and ions μ = m2/m1 were almost the same for all cases considered and greater than 1 (direct mass ratio) however, the difference of binding energies of target atoms in the cases of Cs+ and K+ scattering was almost twice as much. It has been noticed that the dependencies of the relative energy retained by scattering ions at the maximum of energy distribution versus the initial energy Em/E0 (E0) have a similar shape in all cases. The relative energy retained by scattering ions increases while the initial energy of incidence ions decreases. The curves are placed above each other relative to the binding energies of target atoms, to show what this says about the influence of binding energy on a process of scattering of low-energy ions. The correlation between value of energy change maintained by an ion for different values of E0 in the case of scattering by targets with different masses of atoms and its binding energies is experimentally established. The contrary behavior of the Em/E0 (E0) dependencies concerning the target atom binding energy quantity Eb for cases with direct (μ > 1) and inverse (μ < 1) mass ratio of colliding particles is established. The comparison of experimental energy distributions with calculated histograms shows that the binary collision approximation cannot elucidate the abnormally great shift in the maxima of relative energy distributions towards greater energy retained by scattering ions.  相似文献   

7.
The chemical bond between atoms in metal oxides is expressed in an energy scale. Total energy is partitioned into the atomic energy densities of constituent elements in the metal oxide, using energy density analysis. The atomization energies, ΔEM for metal atom and ΔEO for O atom, are then evaluated by subtracting the atomic energy densities from the energy of the isolated neutral atom, M and O, respectively. In this study, a ΔEO vs. ΔEM diagram called atomization energy diagram is first proposed and used for the understanding of the nature of chemical bond in various metal oxides. Both ΔEM and ΔEO values reflect the average structure as well as the local structure. For example their values vary depending on the vertex, edge or face sharing of MO6 octahedron, and also change with the overall density of binary metal oxides. For perovskite-type oxides it is shown that the ΔEO value tends to increase by the phase transition from cubic to tetragonal phase, regardless of the tilting-type or the 〈1 0 0〉 displacement-type transition. The bond formation in spinel-type oxides is also understood with the aid of the atomization energies. The present approach based on the atomization energy concept will provide us a new clue to the design of metal oxides.  相似文献   

8.
The characteristic electron-energy-loss (EEL) spectra of the pure surface of metallic yttrium and of this surface in the initial stages of oxidation are recorded. The energy of the primary electron beam E p is 200–1000 eV. The spectra exhibit high-and low-frequency peaks. During oxidation, the positions of the basic peaks in the EEL spectra are significantly shifted. The peaks corresponding to the bulk energy loss shift toward higher energies upon oxidation. The peak corresponding to the low-frequency surface oscillations also shifts, but toward lower energies, and its intensity monotonically decreases with increasing oxygen dose. The differences between the spectra recorded at different E p are explained as resulting from an increase in the electron escape depth with E p .  相似文献   

9.
The spin echo NMR spectra of 59Co in R2(Co1-xMnx)17, (R = Y, Gd) measured at 4.2 K are reported. The large shift of resonance lines is observed, that is explained as caused by reorientation of easy axis of magnetisation from easy plane to easy direction (c axis). It is suggested to explain quantitatively the spectra, that only two of four Co sites (9d and 18f) in R2Co17 structure play a dominant role in determining of anisotropy energy and the Co atoms at the 6c sites (“dumb-bell” atoms) give no direct contribution to the anisotropy energy of the compound. The corresponding changes of local anisotropy energy and the orbital part of cobalt magnetic moment characteristic for each of cobalt structural sites are calculated and discussed.  相似文献   

10.
M. Pfuff  J. Appel 《Surface science》1977,66(2):507-526
For a nondegenerate narrow energy band spanned by a semiinfinite chain of three-dimensional atoms, the electronic potential and the electron density of states are calculated selfconsistently in the vicinity of the chain end. The electron-electron interaction is treated in the Hartree-Fock approximation, using the Green function method. The results for the potential and the density of states are discussed in terms of the parameters which determine the bulk electronic structure, such as the Fermi energy EF and the intra- and interatomic Coulomb repulsion k0 and K1. Futhermore, the self consistent method is extended to an impurity atom at the chain end. The existence of bonding and antibonding surface states is found to depend on both the bulk and impurity parameters, such as the intraatomic Coulomb repulsion Uα and the nearest neighbour hopping element T.  相似文献   

11.
We have studied the spectral dependence of the first order Raman scattering cross section of Ge at room and liquid nitrogen temperatures in the energy region containing the E1 and E1 + Δ1 optical gaps. This region was covered by a fine mesh of points obtained from the discrete lines of three gas lasers and a cw continuously tunable dye laser. Only one resonant peak was observed, as opposed to the two peaks that characterise the absorption and reflection spectra in this region. The shape of this resonance peak can be explained as due to the changes in the electronic polarizability produced by phonon-induced wave function mixing of the spin-orbit split Λ valence band doublet. The observed temperature shift in the resonant energy is much smaller than the one predicted from the known shifts of the optical gaps with temperature. Furthermore the resonant peak at room temperature appears shifted to higher energies when compared with the theoretical peak calculated from the room temperature optical constants. The resonant Raman peak appears to shift with increasing temperature by the full thermal expansion effect plus only a fraction of the electron-phonon interaction shift seen in the optical constants.  相似文献   

12.
X-ray photoelectron spectroscopy (XPS) was used to evidence the effect of the Bi2O3 to SiO2 ratio and of partial crystallisation on the electronic charge density around the atoms entering silica-bismuthate glasses of nominal composition 0.01Fe2O3⋅0.99[xSiO2⋅(100−x)Bi2O3] with . The core level spectra show significant composition dependent changes in binding energy, and the full width at half maximum of photoelectron peaks both of cations and of oxygen atoms. The analysis reveals changes in electron density correlated with the ionic and covalent character of the samples. The shift in binding energy suggests charge transfer from silicon and oxygen atoms to bismuth atoms. Contrary to the expected behaviour in conventional silicate oxide systems, the results indicate an increase of ionicity for silicon and of covalency for bismuth atoms. The same evolution of ionicity/covalency is observed after partial crystallisation.  相似文献   

13.
We report a detailed theoretical calculation of the electronic band structure of CeO2 in cubic and orthorhombic phases under pressure using a tight-binding linear muffin-tin orbital method (TB-LMTO) within local density approximation (LDA). The compressibility behavior of this compound was discussed in the light of the changes occurring in the electronic structure. Apart from the electronic band structure and structural stability calculations, the density of states (DOS) and Fermi energies (Ef) at various pressures are calculated. The calculated lattice parameter, transition pressure, bulk modulus and the pressure-volume relation are found out to be in good agreement with experimental results.  相似文献   

14.
Ab initio X-ray absorption near edge structure (XANES) calculations for FeSexTe1−x, using a structural model that combines FeSe and FeTe phases at the nanoscale, are compared with Fe K-edge XANES measurements in the “pre-edge” region. The important aspects of this model are (i) magnetic order in the FeTe phase; (ii) Se and Te atoms placed randomly in both FeSe and FeTe crystallographic positions and; (iii) the two distinct distances for Fe–Se and Fe–Te of the bulk phases. The calculated spectra reproduce the observed increase of spectral weight in the experiments on FeSexTe1−x with Se concentration. This is consistent with an inhomogeneous local electronic structure of FeSexTe1−x. Additionally, we have calculated projected electronic density of d-states for the Fe atom, revealing increased spectral weight in the “pre-edge” region of the XANES spectra, which correlates with the increase in Se concentration. The decrease of calculated Fe d-density of states for the Fermi level, N(εF), for high Te content is consistent with the suppression of superconductivity in the title system.  相似文献   

15.
Low energy Raman scattering from the ab-plane of the 2H polytype single crystal NbSe2 has been investigated in the normal (N), incommensurate charge density wave (ICDW) and superconducting (SC) phases. The temperature dependence of the polarization resolved Raman response has been obtained for the excitation wavelength of 647 nm and fitted to phenomenological models for the E2g and A1g symmetry channels. The A1g response can be fitted by a simple damped oscillator peak superimposed on continuous background. The E2g response displays an anti-resonance interference pattern between the inter-layer phonon and the CDW-induced mode such that a hybridized configuration (Fano line shape [1]) is required for modelling. The polarization specific peak maxima positions and line widths as a function of temperature, deduced in this manner, are presented. Partial suppression of the electronic continuum scattering in the Raman shift range up to 110 cm−1 in the A1g symmetry channel and beyond 300 cm−1 in the E2g symmetry channel is indicative of high energy electronic states far away from the Fermi surface participating in the ICDW formation.  相似文献   

16.
The resonant Raman scattering in GeSi/Si structures with GeSi quantum dots has been analyzed. These structures were formed at various temperatures in the process of molecular-beam epitaxy. It has been shown that Raman scattering spectra recorded near resonances with the E0 and E1 electronic transitions exhibit the lines of Ge optical phonons whose frequencies differ significantly from the corresponding values in bulk germanium. In the structures grown at low temperatures (300–400°C), the phonon frequency decreases with increasing excitation energy. This behavior is attributed to Raman scattering, which is sensitive to the size of quantum dots, and shows that quantum dots are inhomogeneous in size. In the structures grown at a higher temperature (500°C), the opposite dependence of the frequency of Ge phonons on excitation energy is observed. This behavior is attributed to the competitive effect of internal mechanical stresses in quantum dots, the localization of optical photons, and the mixing of Ge and Si atoms in structures with a bimodal size distribution of quantum dots.  相似文献   

17.
On the basis of the tight binding recursion method the local density of states and the “band” energy of a binary p-d model compound (Ep = ?1 eV, Ed = 0 eV) with rock salt crystal structure are analyzed in terms of the number of interacting shells of atoms or cluster size, correspondingly. It is found that a small number of shells is sufficient to describe the main features of the local density of states. To set a reasonable value for the “band” energy, at least 4 shells corresponding to a cluster size of 312 atoms are necessary. A further calculation was done by switching off the nearest neighbour p-d interaction, thus demonstrating its crucial role for a binary rock salt compound.  相似文献   

18.
The complete set of optical fundamental functions is determined for diamond in the range from 4 to 32 eV. The features of the bulk and surface characteristic energy loss spectra are elucidated and the functions n eff(E) and ?eff(E) are calculated. The energies of volume and surface plasmons are established.  相似文献   

19.
Variable angle spectroscopic ellipsometry has been applied to characterize the optical constants of bulk Cu(In0.7Ga0.3)5Se8 and Cu(In0.4Ga0.6)5Se8 crystals grown by the Bridgman method. The spectra were measured at room temperature over the energy range 0.8-4.4 eV. Adachi’s model was used to calculate the dielectric functions as well as the spectral dependence of complex refractive index, absorption coefficient, and normal-incidence reflectivity. The calculated data are in good agreement with the experimental ones over the entire range of photon energies. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A, and E1B interband transitions, have been determined using the simulated annealing algorithm.  相似文献   

20.
The adsorption, desorption, and surface structural properties of Na and NO on Ag(111), together with their coadsorption and surface reactivity, have been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption of NO into the a-state occurs at 300 K with an initial sticking probability of ~0.1, saturation occurring at a coverage of ~120. Desorption occurs reversibly without decomposition and is characterised by a desorption energy of Ed ~ 103 kJ mol?1. In the coverage regime 0 < θNa < 1, sodium adsorbs in registry with the Ag surface mesh and the desorption spectra show a single peak corresponding to Ed ~ 228 kJ mol?1. For multilayer coverages (1 < θ Na < 5) a new low temperature peak appears in the desorption spectra with Ed ~ 187 kJ mol?1. This is identified with Na desorption from an essentially Na surface, and the desorption energy indicates that Na atoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The LEED results show that Na multilayers grow as a (√7 × √7) R19.2° overlayer, and are interpreted in a way which is consistent with the above conclusion. Coadsorption of Na and NO leads to the appearance of a more strongly bound and reactive chemisorbed state of NO (β-NO) with Ed ~ 121 kJ mol?1. β-NO appears to undego surface dissociation to yield adsorbed O and N atoms whose subsequent reactions lead to the formation of N2, N2O, and O2 as gaseous products. The reactive behaviour of the system is complicated by the effects of Na and O diffusion into the bulk of the specimen, but certain invariant features permit us to postulate an overall reaction mechanism, and the results obtained here are compared with other relevant work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号