首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   

2.
In this study, the accuracy of a Pennsylvania State University-National Center for Atmospheric Research mesoscale model (PSU/NCAR MM5) for predicting heavy summer precipitation over the Korean Peninsula was investigated. A total of 1800 simulations were performed using this model for 30 heavy rainfall events employing four cumulus parameterization schemes (CPS), two grid-scale resolvable precipitation schemes (GRS), and two planetary boundary layer (PBL) schemes in three model resolutions (90 km, 30 km, and 10 km). The heavy rainfall events were mesoscale convective systems developed under the influence of mid-latitude baroclinic systems with low-level moisture transport from the ocean. The predictive accuracy for maximum rainfall was approximately 80% for 10-km resolution and was 60% for 30-km resolution. The predictive accuracy for rainfall position extended to ~150 km from the observed position for both resolutions. Simulated rainfall was most sensitive to CPS, then to PBL schemes, and then to GRS. In general, the Grell (GR) scheme and the Anthes and Kuo (AK) scheme showed a better prediction capability for heavy rainfall than did the Betts-Miller (BM) scheme and the Kain-Fritsch (KF) scheme. The GR scheme also performed well in the 24-h and 12-h precipitation predictions: the parameterized convective rainfall in GR is directly related to synoptic-scale forcing. The models without CPS performed better for rainfall amounts but worse for rainfall position than those with CPS. The MM5 model demonstrated substantial predictive capacity using synoptic-scale initial conditions and lateral boundary data because heavy summer rainfall in Korea occurs in a strong synoptic-scale environment.  相似文献   

3.
The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2 3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the Mα CS. Several convection lines developed during the evolution of the MαCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.  相似文献   

4.
Mesoscale predictability of mei-yu heavy rainfall   总被引:1,自引:0,他引:1  
Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4-6 July 2003 in eastern China. Due to the multi-scale character of th...  相似文献   

5.
The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MαCS. Several convection lines developed during the evolution of the MαCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.  相似文献   

6.
The strong heavy rainfall on 3-5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a...  相似文献   

7.
The mesoscale moist adjoint sensitivities related to the initiation of mesoscale convective systems (MCSs) are evaluated for a mei-yu heavy rainfall event. The sensitivities were calculated on a realistic background gained from a four-dimensional variational data assimilation of precipitation experiment to make the sensitivity computation possible and reasonable within a strong moist convective event at the mesoscale. The results show that the computed sensitivities at the mesoscale were capable of capturing the factors affecting MCS initiation. The sensitivities to the initial temperature and moisture are enhanced greatly by diabatic processes, especially at lower levels, and these sensitivities are much larger than those stemming from the horizontal winds, which implies that initiation of MCSs is more sensitive to low-level temperature and moisture perturbations rather than the horizontal winds. Moreover, concentration of sensitivities at low levels reflects the characteristics of the mei-yu front. The results provide some hints about how to improve quantitative precipitation forecasts of mei-yu heavy rainfall, such as by conducting mesoscale targetted observations via the adjoint-based method to reduce the low-level errors in the initial temperature and moisture.  相似文献   

8.
WRF模式中微物理和积云参数化方案的对比试验   总被引:10,自引:3,他引:7  
为了研究微物理参数化方案对珠江三角洲(简称珠三角)降水模拟的影响,利用WRF中尺度数值预报模式,在3 km模式分辨率下,在微物理方案为WSM6方案条件下,选用KF、BMJ、GD以及G3等四种积云参数化方案对2010年5月14日广东珠三角地区的一次暴雨过程进行了模拟试验。结果显示,KF方案对于降水带和降水量的模拟与实况较为一致。在积云参数化方案为KF条件下,分别选用Kessler、Lin et al、WSM 3、WSM5、Ferrier(New eta)和WSM6等6种微物理方案再次对这次暴雨过程进行模拟试验,模拟结果的对比分析表明:选用Lin et al微物理方案时,模式较好地模拟出了强降水雨带的位置和降水强度;而其他5种参数方案的模拟效果均不好,降水量明显偏小,雨带位置偏差较大;同时对低空急流、K指数和上升速度等物理量分析可知,Lin et al方案能较好地模拟出降水实况。  相似文献   

9.
物理过程参数化方案对中尺度暴雨数值模拟影响的研究   总被引:48,自引:5,他引:43  
陈静  薛纪善  颜宏 《气象学报》2003,61(2):203-218
利用中尺度非静力MM 5模式和中国 2 0 0 1年 8月的 4个暴雨个例 ,研究了非绝热物理过程对中国暴雨动力和热力场预报的影响 ,深入分析了对流参数化方案在中尺度暴雨预报中的作用 ,讨论了利用模式扰动方法开展中国暴雨集合预报的可行性。结果表明 ,在短期数值预报中 ,非绝热物理过程对高度场预报影响较小 ,但边界层方案和对流参数化方案对产生暴雨的 3个基本条件即水汽通量散度、垂直速度、不稳定层结的影响很明显。不同对流参数化方案所预报的中尺度热力、动力场离差的结构特征与所预报降水的离差特征相似 ,且主要是在模式积分初期迅速增加 ,其后即趋于稳定。对中国热力场较均匀的暴雨过程 ,可以通过扰动模式的边界层和对流参数化方案 ,构造集合预报模式  相似文献   

10.
黄安宁  张耀存  朱坚 《大气科学》2009,33(6):1212-1224
利用PσRCM9区域气候模式, 分析了中国夏季不同强度降水模拟对不同积云对流参数化方案的敏感性。结果表明, 采用四种积云对流参数化方案, 模式能够模拟出小雨、 大雨和暴雨的雨量百分比和雨日百分比空间分布的一致性特征, 但不能模拟出中雨雨量百分比和雨日百分比空间分布的相似性, 这是由于模式不能模拟中雨雨量百分比的空间分布形式所致。还发现模拟的我国夏季降水以小雨和中雨为主, 四种积云对流参数化方案均低估了中国夏季大雨和暴雨对总降水的贡献, 尤其是在我国西部、 东北和华北地区更明显。不同积云对流参数化方案下模拟的极端强降水阈值的空间分布形式基本与观测一致, 但强度与观测存在较大差异。相比较而言, Grell方案较Kuo、 Anthes-Kuo和Betts-Mille积云对流参数化方案更适合中国东南部地区夏季极端强降水的模拟。  相似文献   

11.
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However,the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front,and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently,the heavy rainfall forecast was improved.  相似文献   

12.
积云对流参数化对一交梅雨锋暴雨过程影响的模拟检验   总被引:12,自引:10,他引:2  
彭新东  吴晓鸣 《高原气象》1999,18(3):451-461
应用1988年版日本谱模式JSM,对比分析了Arakawa-Sckawa-Schubert、Kain-Fritsch、KuoAnthes和Gadd-Keers等几种积云对流参数化方案在梅雨锋暴雨对流系统模拟中的表现。  相似文献   

13.
A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-α-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability.  相似文献   

14.
Based on the non-hydrostatic version of Mesoscale Model version 5 (MMS) and the data sets of four heavy rainfall scenarios occurring in August 2001 in China,this paper investigates the impacts of diabatic physical processes on predictions of dynamic and thermodynamic elements of heavy rainfall in China,deeply analyzes the effects of convective schemes on mesoscale heavy rain simulations and discusses the feasibility of using model physics perturbations in ensemble simulation of heavy rain,The results show that diabatic physical processes have little impact on the short-range prediction of geopotential height.However,planetary boundary layer schemes and convective schemes have significant influence on moisture divergence flux,vertical velocity,and unstable stratification,which are the three basic conditions of torrential rain.The forecast deviations in different convection schemes increase rapidly in the first 12 h time periods of simulation and the deviation structures are well correlated to that of sub-grid scale rainfall,while in the later periods of simulation with less correlation.Diabatie physical processes influence the structure and evolution of the simulations.For the rain storm events with a homogeneous thermal environmental condition in China.the numerical model ensembles could be created by perturbing the planetary parameterization scheme and convective parameterization.  相似文献   

15.
梅雨锋两类中尺度低压(扰动)及其暴雨的数值研究   总被引:11,自引:6,他引:5  
对1999年6月梅雨锋频发型中尺度低压(扰动)及其暴雨代表个例,利用区域中尺度数值模式MM5进行了数值研究.基准试验成功复制出中尺度低压(扰动)和暴雨的发生发展过程,系统和降水的演变与强度结果比较合理.借助于高时空分辨率的模式输出,在一定程度上可以揭示中尺度低压(扰动)发生发展较详细的演变过程,同时也可描述出发展演变中某些更加细微的特征和反映对流层高低空气流的特征以及它们之间的相互作用.在基准试验基础上设计的一组数值试验,探讨了同中尺度低压(扰动)暴雨相关的物理过程,包括降水的显、隐式参数化方案,凝结潜热释放,行星边界层过程,局地地形对中尺度低压(扰动)及其所伴暴雨发生发展的影响.这些结果能在更加深入理解梅雨锋上两类中尺度低压(扰动)及其暴雨过程的具体物理图象方面提供一些有益的帮助.  相似文献   

16.
汪玲瑶  谌芸  肖天贵  李晟祺  葛蕾 《气象》2018,44(6):771-780
本文首先给出江南地区暖区暴雨的定义,并按天气形势将其分为暖切变型、冷锋锋前型、副热带高压(以下简称副高)型和强西南急流型四类。然后利用2010—2016年5—9月常规和自动站逐时降水等非常规观测资料统计暖区暴雨的时空分布特征和降水性质等,并对暖区暴雨的形成原因进行初步分析。最后利用NCEP FNL全球分析资料,基于中尺度分析技术给出四类暖区暴雨的系统配置:(1)四类暖区暴雨均为分散性局地降水,降水多发生于山区、平原和湖泊交界处等不均匀下垫面附近。其中,暖切变型降水范围广、强度最大、极端性最明显且主要位于江南中西部;冷锋锋前型降水集中、强度较大且具有一定极端性,主要位于江南中部;副高型降水强度较弱,主要位于江南中东部;强西南急流主要位于江南西部。(2)暖切变型和强西南急流型以夜间降水为主,副高型降水集中在午后,冷锋锋前型降水日变化不明显。(3)暖区暴雨由稳定性和对流性降水共同组成且降水量越大,降水对流性越明显。(4)在低层高湿、不稳定能量积聚等有利背景下,暖切变型、冷锋型和副高型暖区降水多由边界层(地面)中尺度辐合线配合高低空急流耦合产生,强西南急流型一般形成于低空急流上的中尺度风速脉动及地面辐合线附近,且低空急流越强,暴雨强度越大。(5)暖切变型和冷锋型暖区暴雨的落区分别位于低层850hPa暖切变以南和地面锋前的显著湿区内,副高型和强西南急流型的暴雨落区分别位于副高内和强低空急流出口区左前侧的水汽充沛且大气层结不稳定区内。四类暖区暴雨常表现为长生命史的移动型中尺度雨团途经山区或河流湖泊等不均匀下垫面时,强度增大、移速减慢,形成暖区局地强降水。  相似文献   

17.
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.  相似文献   

18.
不同微物理方案对一次梅雨锋暴雨过程模拟的影响   总被引:6,自引:0,他引:6  
孙晶  楼小凤  史月琴 《气象学报》2011,69(5):799-809
中尺度模式中描述湿物理过程的方案主要有对流参数化方案和云微物理方案,当网格距达到可以分辨积云对流尺度时,云微物理方案对描述云和降水物理过程的作用将变得更为重要.利用GRAPES高分辨率中尺度数值模式对2007年7月7-9日中国梅雨锋暴雨过程进行了数值模拟,从降水量、雷达回波、水成物分布方面结合观测资料,分析了NCFP简...  相似文献   

19.
引发梅雨锋暴雨的频发型中尺度低压(扰动)的诊断研究   总被引:17,自引:6,他引:11  
董佩明  赵思雄 《大气科学》2004,28(6):876-891
利用再分析资料及加密观测资料,对1999年6月下旬有利大尺度环境条件下长江中下游地区梅雨锋上频发的5个中尺度低压(扰动)进行了诊断研究.由合成分析得到了长江中下游地区中尺度低压(扰动)的基本特征(共性);依其特征将之归纳为两种类型;之后选择两个典型个例分析了它们各自发生发展过程中特征的异同(个性).分析结果揭示了梅雨锋中尺度低压(扰动)的动力和热力结构特征、暴雨过程中对流活动的详细过程及典型雨团的路径和生命史.此外,高山站每小时的风记录等信息反映出低空西南急流和其上大风速中心同中尺度低压(扰动)及暴雨发生演变过程有密切关系.高空急流对中尺度低压(扰动)的发展及暴雨有明显的作用,有无高空西风急流与低空急流的耦合似乎是未来发展与不发展中尺度低压(扰动)之间重要的动力学区别之一.  相似文献   

20.
A heavy rainfall in the Meiyu front during 4--5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3--6) with different explicit cloud microphysical parameterization schemes. The characteristics of microphysical process of convective cloud are studied by the model outputs. The simulation study reveals that: (1) The mesoscale model MM5 with explicit cloud microphysical process is capable of simulating the instant heavy rainfall in the Meiyu front, the rainfall simulation could be improved significantly as the model resolution is increased, and the Goddard scheme is better than the Reisner or Schultz scheme. (2) The convective cloud in the Meiyu front has a comprehensive structure composed of solid, liquid and vapor phases of water, the mass density of water vapor is the largest one in the cloud; the next one is graupel, while those of ice, snow, rain water and the cloud water are almost same. The height at which mass density peaks for different hydrometeors is almost unchangeable during the heavy rainfall period. The mass density variation of rain water, ice, and graupel are consistent with that of ground precipitation, while that of water vapor in the low levels is 1--2 h earlier than the precipitation. (3) The main contribution to the water vapor budget in the atmosphere is the convergence of vapor flux through advection and convection, which provides the main vapor source of the rainfall. Besides the basic process of the auto-conversion of cloud water to rain water, there is an additional cloud microphysical process that is essential to the formation of instant heavy rainfall, the ice-phase crystals are transformed into graupels first and then the increased graupels mix with cloud water and accelerates the conversion of cloud water to rain water. The positive feedback mechanism between latent heat release and convection is the main cause to maintain and develop the heavy precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号